Gradle User Guide

Version 2.3

Copyright © 2007-2012 Hans Dockter, Adam Murdoch

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

Table of Contents

1. Introduction
1.1. About this user guide

2. Overview
2.1. Features
2.2. Why Groovy?

3. Tutorials
3.1. Getting Started

4. Installing Gradle
4.1. Prerequisites
4.2. Download
4.3. Unpacking
4.4. Environment variables
4.5. Running and testing your installation
4.6. VM options

5. Troubleshooting
5.1. Working through problems
5.2. Getting help

6. Build Script Basics
6.1. Projects and tasks
6.2. Hello world
6.3. A shortcut task definition
6.4. Build scripts are code
6.5. Task dependencies
6.6. Dynamic tasks
6.7. Manipulating existing tasks
6.8. Shortcut notations
6.9. Extratask properties
6.10. Using Ant Tasks
6.11. Using methods
6.12. Default tasks
6.13. Configure by DAG
6.14. Where to next?

7. Java Quickstart
7.1. The Java plugin
7.2. A basic Java project
7.3. Multi-project Java build
7.4. Whereto next?

8. Dependency Management Basics
8.1. What is dependency management?
8.2. Declaring your dependencies
8.3. Dependency configurations
8.4. External dependencies
8.5. Repositories
8.6. Publishing artifacts
8.7. Whereto next?

9. Groovy Quickstart
9.1. A basic Groovy project
9.2. Summary

10. Web Application Quickstart
10.1. Building aWAR file
10.2. Running your web application

10.3. Summary

11. Using the Gradle Command-Line
11.1. Executing multiple tasks
11.2. Excluding tasks
11.3. Continuing the build when afailure occurs
11.4. Task name abbreviation
11.5. Selecting which build to execute
11.6. Obtaining information about your build
11.7. Dry Run
11.8. Summary

12. Using the Gradle Graphical User Interface
12.1. Task Tree
12.2. Favorites
12.3. Command Line
12.4. Setup

13. Writing Build Scripts
13.1. The Gradle build language
13.2. The Project API
13.3. The Script API
13.4. Declaring variables
13.5. Some Groovy basics

14. Tutorid - 'Thisand That'
14.1. Directory creation
14.2. Gradle properties and system properties
14.3. Configuring the project using an external build script
14.4. Configuring arbitrary objects
14.5. Configuring arbitrary objects using an external script
14.6. Caching

15. More about Tasks
15.1. Defining tasks
15.2. Locating tasks
15.3. Configuring tasks
15.4. Adding dependencies to atask
15.5. Ordering tasks
15.6. Adding a description to atask
15.7. Replacing tasks
15.8. Skipping tasks
15.9. Skipping tasks that are up-to-date
15.10. Task rules
15.11. Finalizer tasks
15.12. Summary

16. Working With Files
16.1. Locating files
16.2. File collections
16.3. Filetrees
16.4. Using the contents of an archive as afiletree
16.5. Specifying a set of input files
16.6. Copying files
16.7. Using the Sync task
16.8. Creating archives

17. Using Ant from Gradle
17.1. Using Ant tasks and typesin your build
17.2. Importing an Ant build
17.3. Ant properties and references
17.4. APl

18. Logging

18.1. Choosing alog level

18.2. Writing your own log messages

18.3. Logging from external tools and libraries
18.4. Changing what Gradle logs

19. The Gradle Daemon
19.1. Enter the daemon
19.2. Reusing and expiration of daemons
19.3. Usage and troubleshooting
19.4. Configuring the daemon

20. The Build Environment
20.1. Configuring the build environment via gradle.properties
20.2. Accessing the web via a proxy

21. Gradle Plugins
21.1. What plugins do
21.2. Types of plugins
21.3. Applying plugins
21.4. Applying plugins with the buildscript block
21.5. Applying plugins with the plugins DSL
21.6. Finding community plugins
21.7. More on plugins

22. Standard Gradle plugins
22.1. Language plugins
22.2. Incubating language plugins
22.3. Integration plugins
22.4. Incubating integration plugins
22.5. Software devel opment plugins
22.6. Incubating software development plugins
22.7. Base plugins
22.8. Third party plugins

23. The Java Plugin
23.1. Usage
23.2. Source sets
23.3. Tasks
23.4. Project layout
23.5. Dependency management
23.6. Convention properties
23.7. Working with source sets
23.8. Javadoc
23.9. Clean
23.10. Resources
23.11. CompileJava
23.12. Incremental Java compilation
23.13. Test
23.14. Jar
23.15. Uploading

24. The Groovy Plugin
24.1. Usage
24.2. Tasks
24.3. Project layout
24.4. Dependency management
24.5. Automatic configuration of groovyClasspath
24.6. Convention properties
24.7. Source set properties
24.8. GroovyCompile

25. The Scala Plugin
25.1. Usage
25.2. Tasks

25.3. Project layout

25.4. Dependency management

25.5. Automatic configuration of scalaClasspath
25.6. Convention properties

25.7. Source set properties

25.8. Fast Scala Compiler

25.9. Compiling in external process

25.10. Incremental compilation

25.11. Eclipse Integration

25.12. IntelliJ IDEA Integration

26. The War Plugin
26.1. Usage
26.2. Tasks
26.3. Project layout
26.4. Dependency management
26.5. Convention properties
26.6. War
26.7. Customizing

27. The Ear Plugin
27.1. Usage
27.2. Tasks
27.3. Project layout
27.4. Dependency management
27.5. Convention properties
27.6. Ear
27.7. Customizing
27.8. Using custom descriptor file

28. The Jetty Plugin
28.1. Usage
28.2. Tasks
28.3. Project layout
28.4. Dependency management
28.5. Convention properties

29. The Checkstyle Plugin
29.1. Usage
29.2. Tasks
29.3. Project layout
29.4. Dependency management
29.5. Configuration

30. The CodeNarc Plugin
30.1. Usage
30.2. Tasks
30.3. Project layout
30.4. Dependency management
30.5. Configuration

31. The FindBugs Plugin
31.1. Usage
31.2. Tasks
31.3. Dependency management
31.4. Configuration

32. The JDepend Plugin
32.1. Usage
32.2. Tasks
32.3. Dependency management
32.4. Configuration

33. The PMD Plugin

33.1. Usage

33.2. Tasks

33.3. Dependency management
33.4. Configuration

34. The JaCoCo Plugin
34.1. Getting Started
34.2. Configuring the JaCoCo Plugin
34.3. JaCoCo Report configuration
34.4. JaCoCo specific task configuration
34.5. Tasks
34.6. Dependency management

35. The Sonar Plugin
35.1. Usage
35.2. Analyzing Multi-Project Builds
35.3. Analyzing Custom Source Sets
35.4. Analyzing languages other than Java
35.5. Setting Custom Sonar Properties
35.6. Configuring Sonar Settings from the Command Line
35.7. Tasks

36. The Sonar Runner Plugin
36.1. Sonar Runner version and compatibility
36.2. Getting started
36.3. Configuring the Sonar Runner
36.4. Specifying the Sonar Runner version
36.5. Analyzing Multi-Project Builds
36.6. Analyzing Custom Source Sets
36.7. Analyzing languages other than Java
36.8. More on configuring Sonar properties
36.9. Setting Sonar Properties from the Command Line
36.10. Controlling the Sonar Runner process
36.11. Tasks

37. The OSGi Plugin
37.1. Usage
37.2. Implicitly applied plugins
37.3. Tasks
37.4. Dependency management
37.5. Convention object
37.6.

38. The Eclipse Plugins
38.1. Usage
38.2. Tasks
38.3. Configuration
38.4. Customizing the generated files

39. The IDEA Plugin
39.1. Usage
39.2. Tasks
39.3. Configuration
39.4. Customizing the generated files
39.5. Further thingsto consider

40. The ANTLR Plugin
40.1. Usage
40.2. Tasks
40.3. Project layout
40.4. Dependency management
40.5. Convention properties
40.6. Source set properties
40.7. Controlling the ANTLR generator process

41. The Project Report Plugin
41.1. Usage
41.2. Tasks
41.3. Project layout
41.4. Dependency management
41.5. Convention properties

42. The Announce Plugin
42.1. Usage
42.2. Configuration

43. The Build Announcements Plugin
43.1. Usage

44. The Distribution Plugin
44.1. Usage
44.2, Tasks
44 3. Distribution contents
44 4. Publishing distributions

45, The Application Plugin
45.1. Usage
45.2. Tasks
45.3. Convention properties
45.4. Including other resources in the distribution

46. The Java Library Distribution Plugin
46.1. Usage
46.2. Tasks
46.3. Including other resources in the distribution

47. Build Init Plugin
47.1. Tasks
47.2. What to set up
47.3. Build init types

48. Wrapper Plugin
48.1. Usage
48.2. Tasks

49. The Build Dashboard Plugin
49.1. Usage
49.2. Tasks
49.3. Project layout
49.4. Dependency management
49.5. Configuration

50. The Java Gradle Plugin Development Plugin
50.1. Usage

51. Dependency Management
51.1. Introduction
51.2. Dependency Management Best Practices
51.3. Dependency configurations
51.4. How to declare your dependencies
51.5. Working with dependencies
51.6. Repositories
51.7. How dependency resolution works
51.8. Fine-tuning the dependency resolution process
51.9. The dependency cache
51.10. Strategies for transitive dependency management

52. Publishing artifacts
52.1. Introduction
52.2. Artifacts and configurations

52.3. Declaring artifacts
52.4. Publishing artifacts
52.5. More about project libraries

53. The Maven Plugin
53.1. Usage
53.2. Tasks
53.3. Dependency management
53.4. Convention properties
53.5. Convention methods
53.6. Interacting with Maven repositories

54, The Signing Plugin
54.1. Usage
54.2. Signatory credentials
54.3. Specifying what to sign
54.4. Publishing the signatures
54.5. Signing POM files

55. Building native binaries
55.1. Supported languages
55.2. Tool chain support
55.3. Tool chain installation
55.4. Component model
55.5. Building alibrary
55.6. Building an executable
55.7. Tasks
55.8. Finding out more about your project
55.9. Language support
55.10. Configuring the compiler, assembler and linker
55.11. Windows Resources
55.12. Library Dependencies
55.13. Native Binary Variants
55.14. Tool chains
55.15. Visual Studio IDE integration
55.16. CUnit support

56. The Build Lifecycle
56.1. Build phases
56.2. Settingsfile
56.3. Multi-project builds
56.4. Initialization
56.5. Configuration and execution of a single project build
56.6. Responding to the lifecycle in the build script

57. Multi-project Builds
57.1. Cross project configuration
57.2. Subproject configuration
57.3. Execution rules for multi-project builds
57.4. Running tasks by their absolute path
57.5. Project and task paths
57.6. Dependencies - Which dependencies?
57.7. Project lib dependencies
57.8. Parallel project execution
57.9. Decoupled Projects
57.10. Multi-Project Building and Testing
57.11. Multi Project and buildSrc
57.12. Property and method inheritance
57.13. Summary

58. Writing Custom Task Classes
58.1. Packaging atask class
58.2. Writing a simple task class

59.

60.

61.

62.

63.

64.

65.

66.

58.3. A standalone project
58.4. Incremental tasks

Writing Custom Plugins

59.1. Packaging a plugin

59.2. Writing a simple plugin

59.3. Getting input from the build

59.4. Working with files in custom tasks and plugins
59.5. A standalone project

59.6. Maintaining multiple domain objects

Organizing Build Logic

60.1. Inherited properties and methods

60.2. Injected configuration

60.3. Build sourcesin the bui | dSr ¢ project
60.4. Running another Gradle build from a build
60.5. External dependencies for the build script
60.6. Ant optional dependencies

60.7. Summary

Initialization Scripts

61.1. Basic usage

61.2. Using an init script

61.3. Writing an init script

61.4. External dependenciesfor theinit script
61.5. Init script plugins

The Gradle Wrapper
62.1. Configuration
62.2. Unix file permissions

Embedding Gradle

63.1. Introduction to the Tooling API

63.2. Tooling APl and the Gradle Build Daemon
63.3. Quickstart

Comparing Builds

64.1. Definition of terms

64.2. Current Capabilities
64.3. Comparing Gradle Builds

Ivy Publishing (new)

65.1. The“i vy- publ i sh” Plugin

65.2. Publications

65.3. Repositories

65.4. Performing a publish

65.5. Generating the vy module descriptor file without publishing
65.6. Complete example

65.7. Future features

Maven Publishing (new)

66.1. The“maven- publ i sh” Plugin

66.2. Publications

66.3. Repositories

66.4. Performing a publish

66.5. Publishing to Maven Local

66.6. Generating the POM file without publishing

A. Gradle Samples

A.l. Samplecust onBui | dLanguage
A.2. Samplecust onDi stri buti on
A.3. Samplecust onPl ugi n

A4 Samplej aval/ mul ti proj ect

B. Potential Traps

B.1. Groovy script variables
B.2. Configuration and execution phase

C. The Feature Lifecycle
C.1. States
C.2. Backwards Compatibility Policy

D. Gradle Command Line
D.1. Deprecated command-line options
D.2. Daemon command-line options
D.3. System properties
D.4. Environment variables

E. Existing IDE Support and how to cope without it
E.1. IntelliJ
E.2. Eclipse
E.3. Using Gradle without | DE support

Glossary

List of Examples

6.1. Your first build script

6.2. Execution of abuild script

6.3. A task definition shortcut

6.4. Using Groovy in Gradle's tasks

6.5. Using Groovy in Gradl€e's tasks

6.6. Declaration of task that depends on other task
6.7. Lazy dependsOn - the other task does not exist (yet)
6.8. Dynamic creation of atask

6.9. Accessing atask via API - adding a dependency
6.10. Accessing atask via APl - adding behaviour
6.11. Accessing task as a property of the build script
6.12. Adding extra propertiesto atask

6.13. Using AntBuilder to execute ant.|oadfile target
6.14. Using methods to organize your build logic
6.15. Defining a default tasks

6.16. Different outcomes of build depending on chosen tasks
7.1. Using the Javaplugin

7.2. Building a Java project

7.3. Adding Maven repository

7.4. Adding dependencies

7.5. Customization of MANIFEST.MF

7.6. Adding atest system property

7.7. Publishing the JAR file

7.8. Eclipse plugin

7.9. Javaexample - complete build file

7.10. Multi-project build - hierarchical layout

7.11. Multi-project build - settings.gradle file

7.12. Multi-project build - common configuration
7.13. Multi-project build - dependencies between projects
7.14. Multi-project build - distribution file

8.1. Declaring dependencies

8.2. Definition of an external dependency

8.3. Shortcut definition of an external dependency
8.4. Usage of Maven central repository

8.5. Usage of aremote Maven repository

8.6. Usage of aremote Ivy directory

8.7. Usage of alocal Ivy directory

8.8. Publishing to an lvy repository

8.9. Publishing to a Maven repository

9.1. Groovy plugin

9.2. Dependency on Groovy

9.3. Groovy example - complete build file

10.1. War plugin

10.2. Running web application with Jetty plugin
11.1. Executing multiple tasks

11.2. Excluding tasks

11.3. Abbreviated task name

11.4. Abbreviated camel case task name

11.5. Selecting the project using a build file

11.6. Selecting the project using project directory
11.7. Obtaining information about projects

11.8. Providing a description for a project

11.9. Obtaining information about tasks

11.10. Changing the content of the task report
11.11. Obtaining more information about tasks
11.12. Obtaining detailed help for tasks

11.13. Obtaining information about dependencies
11.14. Filtering dependency report by configuration
11.15. Getting the insight into a particular dependency
11.16. Information about properties

12.1. Launching the GUI

13.1. Accessing property of the Project object
13.2. Using local variables

13.3. Using extra properties

13.4. Groovy JDK methods

13.5. Property accessors

13.6. Method call without parentheses

13.7. List and map literals

13.8. Closure as method parameter

13.9. Closure delegates

14.1. Directory creation with mkdir

14.2. Setting properties with a gradle.propertiesfile

14.3. Configuring the project using an external build script

14.4. Configuring arbitrary objects

14.5. Configuring arbitrary objects using a script
15.1. Defining tasks

15.2. Defining tasks - using strings for task names
15.3. Defining tasks with alternative syntax

15.4. Accessing tasks as properties

15.5. Accessing tasks viatasks collection

15.6. Accessing tasks by path

15.7. Creating a copy task

15.8. Configuring atask - various ways

15.9. Configuring atask - with closure

15.10. Defining a task with closure

15.11. Adding dependency on task from another project
15.12. Adding dependency using task object

15.13. Adding dependency using closure

15.14. Adding a'must run after' task ordering

15.15. Adding a'should run after' task ordering

15.16. Task ordering does not imply task execution

15.17. A 'should run after' task ordering isignored if it introduces an ordering cycle
15.18. Adding a description to a task

15.19. Overwriting atask

15.20. Skipping atask using a predicate

15.21. Skipping tasks with StopExecutionException

15.22. Enabling and disabling tasks

15.23. A generator task

15.24. Declaring the inputs and outputs of atask

15.25. Task rule

15.26. Dependency on rule based tasks

15.27. Adding atask finalizer

15.28. Task finalizer for afailing task

16.1. Locating files

16.2. Creating afile collection

16.3. Using afile collection

16.4. Implementing afile collection

16.5. Creating afile tree

16.6. Using afiletree

16.7. Using an archive as afile tree

16.8. Specifying a set of files

16.9. Specifying a set of files

16.10. Copying files using the copy task

16.11. Specifying copy task source files and destination directory
16.12. Selecting the files to copy

16.13. Copying files using the copy() method without up-to-date check
16.14. Copying files using the copy() method with up-to-date check
16.15. Renaming files as they are copied

16.16. Filtering files as they are copied

16.17. Nested copy specs

16.18. Using the Sync task to copy dependencies

16.19. Creating a ZIP archive

16.20. Creation of ZIP archive

16.21. Configuration of archive task - custom archive name
16.22. Configuration of archive task - appendix & classifier
17.1. Using an Ant task

17.2. Passing nested text to an Ant task

17.3. Passing nested elements to an Ant task

17.4. Using an Ant type

17.5. Using a custom Ant task

17.6. Declaring the classpath for a custom Ant task
17.7. Using a custom Ant task and dependency management together
17.8. Importing an Ant build

17.9. Task that depends on Ant target

17.10. Adding behaviour to an Ant target

17.11. Ant target that depends on Gradle task
17.12. Renaming imported Ant targets

17.13. Setting an Ant property

17.14. Getting an Ant property

17.15. Setting an Ant reference

17.16. Getting an Ant reference

18.1. Using stdout to write log messages

18.2. Writing your own log messages

18.3. Using SLF4J to write log messages

18.4. Configuring standard output capture

18.5. Configuring standard output capture for atask
18.6. Customizing what Gradle logs

20.1. Configuring an HTTP proxy

20.2. Configuring an HTTPS proxy

21.1. Applying a script plugin

21.2. Applying abinary plugin

21.3. Applying abinary plugin by type

21.4. Applying a plugin with the buildscript block
21.5. Applying a core plugin

21.6. Applying acommunity plugin

23.1. Using the Java plugin

23.2. Custom Java source layout

23.3. Accessing a source set

23.4. Configuring the source directories of a source set
23.5. Defining a source set

23.6. Defining source set dependencies

23.7. Compiling a source set

23.8. Assembling a JAR for a source set

23.9. Generating the Javadoc for a source set

23.10. Running tests in a source set

23.11. Filtering tests in the build script

23.12. JUnit Categories

23.13. Grouping TestNG tests

23.14. Creating a unit test report for subprojects
23.15. Customization of MANIFEST.MF

23.16. Creating a manifest object.

23.17. Separate MANIFEST.MF for a particular archive
23.18. Separate MANIFEST.MF for a particular archive
24.1. Using the Groovy plugin

24.2. Custom Groovy source layout

24.3. Configuration of Groovy dependency

24.4. Configuration of Groovy test dependency

24.5. Configuration of bundled Groovy dependency
24.6. Configuration of Groovy file dependency

25.1. Using the Scala plugin

25.2. Custom Scala source layout

25.3. Declaring a Scala dependency for production code
25.4. Declaring a Scala dependency for test code

25.5. Enabling the Fast Scala Compiler

25.6. Adjusting memory settings

25.7. Activating the Zinc based compiler

26.1. Using the War plugin

26.2. Customization of war plugin

27.1. Using the Ear plugin

27.2. Customization of ear plugin

28.1. Using the Jetty plugin

29.1. Using the Checkstyle plugin

30.1. Using the CodeNarc plugin

31.1. Using the FindBugs plugin

32.1. Using the JDepend plugin

33.1. Using the PMD plugin

34.1. Applying the JaCoCo plugin

34.2. Configuring JaCoCo plugin settings

34.3. Configuring test task

34.4. Configuring test task

34.5. Using application plugin to generate code coverage data
34.6. Coverage reports generated by applicationCodeCoverageReport
35.1. Applying the Sonar plugin

35.2. Configuring Sonar connection settings

35.3. Configuring Sonar project settings

35.4. Glabal configuration in a multi-project build

35.5. Common project configuration in a multi-project build
35.6. Individual project configuration in a multi-project build
35.7. Configuring the language to be analyzed

35.8. Using property syntax

35.9. Analyzing custom source sets

35.10. Analyzing languages other than Java

35.11. Setting custom global properties

35.12. Setting custom project properties

35.13. Implementing custom command line properties
36.1. Applying the Sonar Runner plugin

36.2. Configuring Sonar connection settings

36.3. Configuring Sonar runner version

36.4. Global configuration settings

36.5. Shared configuration settings

36.6. Individual configuration settings

36.7. Skipping analysis of a project

36.8. Analyzing custom source sets

36.9. Analyzing languages other than Java

36.10. setting custom Sonar Runner fork options
37.1. Using the OSGi plugin

37.2. Configuration of OSGi MANIFEST.MF file
38.1. Using the Eclipse plugin

38.2. Using the Eclipse WTP plugin

38.3. Partia Overwrite for Classpath

38.4. Partial Overwrite for Project

38.5. Export Dependencies

38.6. Customizing the XML

39.1. Using the IDEA plugin

39.2. Partial Rewrite for Module

39.3. Partial Rewrite for Project

39.4. Export Dependencies

39.5. Customizing the XML

40.1. Using the ANTLR plugin

40.2. Declare ANTLR version

40.3. setting custom max heap sizefor ANTLR
42.1. Using the announce plugin

42.2. Configure the announce plugin

42.3. Using the announce plugin

43.1. Using the build announcements plugin

43.2. Using the build announcements plugin from an init script
44.1. Using the distribution plugin

44.2. Adding extra distributions

44.3. Configuring the main distribution

44.4. publish main distribution

45.1. Using the application plugin

45.2. Configure the application main class

45.3. Configure default VM settings

45.4. Include output from other tasks in the application distribution
45.5. Automatically creating files for distribution
46.1. Using the Javalibrary distribution plugin
46.2. Configure the distribution name

46.3. Include files in the distribution

49.1. Using the Build Dashboard plugin

50.1. Using the Java Gradle Plugin Development plugin
51.1. Definition of a configuration

51.2. Accessing a configuration

51.3. Configuration of a configuration

51.4. Module dependencies

51.5. Artifact only notation

51.6. Dependency with classifier

51.7. Iterating over a configuration

51.8. Client module dependencies - transitive dependencies
51.9. Project dependencies

51.10. File dependencies

51.11. Generated file dependencies

51.12. Gradle API dependencies

51.13. Gradle's Groovy dependencies

51.14. Excluding transitive dependencies

51.15. Optional attributes of dependencies

51.16. Collections and arrays of dependencies

51.17. Dependency configurations

51.18. Dependency configurations for project

51.19. Configuration.copy

51.20. Accessing declared dependencies

51.21. Configuration.files

51.22. Configuration.files with spec

51.23. Configuration.copy

51.24. Configuration.copy vs. Configuration.files

51.25. Declaring a Maven and lvy repository

51.26. Providing credentials to aMaven and vy repository
51.27. Adding central Maven repository

51.28. Adding Bintray's JCenter Maven repository
51.29. Using Bintrays's JCenter with HTTP

51.30. Adding the local Maven cache as a repository
51.31. Adding custom Maven repository

51.32. Adding additional Maven repositories for JAR files
51.33. Accessing password protected Maven repository
51.34. Flat repository resolver

51.35. Ivy repository

51.36. Ivy repository with named |ayout

51.37. Ivy repository with pattern layout

51.38. lvy repository with multiple custom patterns
51.39. Ivy repository with Maven compatible layout
51.40. Ivy repository

51.41. Accessing arepository

51.42. Configuration of arepository

51.43. Definition of a custom repository

51.44. Forcing consistent version for agroup of libraries
51.45. Using a custom versioning scheme

51.46. Blacklisting a version with a replacement

51.47. Changing dependency group and/or name at the resolution
51.48. Declaring modul e replacement

51.49. Enabling dynamic resolve mode

51.50. 'Latest' version selector

51.51. Custom status scheme

51.52. Custom status scheme by module

51.53. Ivy component metadatarule

51.54. Rule source component metadata rule

51.55. Component selection rule

51.56. Component selection rule with modul e target
51.57. Component selection rule with metadata

51.58. Component selection rule using a rule source object
51.59. Dynamic version cache control

51.60. Changing maodule cache control

52.1. Defining an artifact using an archive task
52.2. Defining an artifact using afile
52.3. Customizing an artifact

52.4. Map syntax for defining an artifact using afile

52.5. Configuration of the upload task
53.1. Using the Maven plugin

53.2. Creating a stand alone pom.

53.3. Upload of file to remote Maven repository
53.4. Upload of file via SSH

53.5. Customization of pom

53.6. Builder style customization of pom
53.7. Modifying auto-generated content
53.8. Customization of Maven installer
53.9. Generation of multiple poms

53.10. Accessing a mapping configuration
54.1. Using the Signing plugin

54.2. Signing a configuration

54.3. Signing a configuration output

54.4. Signing atask

54.5. Signing atask output

54.6. Conditional signing

54.7. Signing a POM for deployment
55.1. Defining alibrary component

55.2. Defining executable components
55.3. The components report

55.4. The 'cpp’ plugin

55.5. C++ source set

55.6. The'c' plugin

55.7. C source set

55.8. The 'assembler’ plugin

55.9. The 'objective-c' plugin

55.10. The 'objective-cpp’ plugin

55.11. Settings that apply to all binaries
55.12. Settings that apply to all shared libraries

55.13. Settings that apply to all binaries produced for the 'main’ executable component
55.14. Settings that apply only to shared libraries produced for the 'main’ library component

55.15. The 'windows-resources plugin

55.16. Configuring the location of Windows resource sources

55.17. Building aresource-only dll

55.18. Providing alibrary dependency to the source set
55.19. Providing alibrary dependency to the binary

55.20. Declaring project dependencies
55.21. Defining build types

55.22. Configuring debug binaries
55.23. Defining platforms

55.24. Defining flavors

55.25. Targeting a component at particular platforms

55.26. Building all possible variants

55.27. Defining tool chains

55.28. Reconfigure tool arguments

55.29. Defining target platforms

55.30. Registering CUnit tests

55.31. Registering CUnit tests

55.32. Running CUnit tests

56.1. Single project build

56.2. Hierarchical layout

56.3. Flat layout

56.4. Modification of elements of the project tree

56.5. Modification of elements of the project tree

56.6. Adding of test task to each project which has certain property set
56.7. Notifications

56.8. Setting of certain property to all tasks

56.9. Logging of start and end of each task execution

57.1. Multi-project tree - water & bluewhale projects

57.2. Build script of water (parent) project

57.3. Multi-project tree - water, bluewhale & krill projects

57.4. Water project build script

57.5. Defining common behavior of all projects and subprojects
57.6. Defining specific behaviour for particular project

57.7. Defining specific behaviour for project krill

57.8. Adding custom behaviour to some projects (filtered by project name)
57.9. Adding custom behaviour to some projects (filtered by project properties)
57.10. Running build from subproject

57.11. Evaluation and execution of projects

57.12. Evaluation and execution of projects

57.13. Running tasks by their absolute path

57.14. Dependencies and execution order

57.15. Dependencies and execution order

57.16. Dependencies and execution order

57.17. Declaring dependencies

57.18. Declaring dependencies

57.19. Cross project task dependencies

57.20. Configuration time dependencies

57.21. Configuration time dependencies - eval uationDependsOn
57.22. Configuration time dependencies

57.23. Dependencies - real life example - crossproject configuration
57.24. Project lib dependencies

57.25. Project lib dependencies

57.26. Fine grained control over dependencies

57.27. Build and Test Single Project

57.28. Partia Build and Test Single Project

57.29. Build and Test Depended On Projects

57.30. Build and Test Dependent Projects

58.1. Defining a custom task

58.2. A hello world task

58.3. A customizable hello world task

58.4. A build for a custom task

58.5. A custom task

58.6. Using a custom task in another project

58.7. Testing a custom task

58.8. Defining an incremental task action

58.9. Running the incremental task for the first time

58.10. Running the incremental task with unchanged inputs
58.11. Running the incremental task with updated input files
58.12. Running the incremental task with an input file removed
58.13. Running the incremental task with an output file removed
58.14. Running the incremental task with an input property changed
59.1. A custom plugin

59.2. A custom plugin extension

59.3. A custom plugin with configuration closure

59.4. Evaluating file properties |azily

59.5. A build for a custom plugin

59.6. Wiring for a custom plugin

59.7. Using a custom plugin in another project

59.8. Applying a community plugin with the plugins DSL

59.9. Testing a custom plugin

59.10. Using the Java Gradle Plugin Development plugin
59.11. Managing domain objects

60.1. Using inherited properties and methods

60.2. Using injected properties and methods

60.3. Custom buildSrc build script

60.4. Adding subprojects to the root buildSrc project

60.5. Running another build from a build

60.6. Declaring external dependencies for the build script

60.7. A build script with external dependencies

60.8. Ant optional dependencies

61.1. Using init script to perform extra configuration before projects are eval uated
61.2. Declaring external dependencies for an init script

61.3. Aninit script with external dependencies

61.4. Using pluginsin init scripts

62.1. Wrapper task

62.2. Wrapper generated files

65.1. Applying the “ivy-publish” plugin

65.2. Publishing a Java moduleto Ivy

65.3. Publishing additional artifact to lvy

65.4. customizing the publication identity

65.5. Customizing the modul e descriptor file

65.6. Publishing multiple modules from a single project

65.7. Declaring repositories to publish to

65.8. Choosing a particular publication to publish

65.9. Publishing all publications viathe “publish” lifecycle task
65.10. Generating the Ivy module descriptor file

65.11. Publishing a Java module

65.12. Example generated ivy.xml

66.1. Applying the 'maven-publish’ plugin

66.2. Adding a MavenPublication for a Java component
66.3. Adding additional artifact to a MavenPublication
66.4. customizing the publication identity

66.5. Modifying the POM file

66.6. Publishing multiple modules from a single project
66.7. Declaring repositories to publish to

66.8. Publishing a project to a Maven repository

66.9. Publish a project to the Maven local repository
66.10. Generate a POM file without publishing

B.1. Variables scope: local and script wide

B.2. Distinct configuration and execution phase

1

| ntroduction

We would like to introduce Gradle to you, a build system that we think is a quantum leap for build technology
in the Java (JVM) world. Gradle provides:

* A very flexible general purpose build tool like Ant.

® Switchable, build-by-convention frameworks ala Maven. But we never lock you in!

* Very powerful support for multi-project builds.

* Very powerful dependency management (based on Apache lvy).

® Full support for your existing Maven or vy repository infrastructure.

® Support for transitive dependency management without the need for remote repositoriesor pom xm andi vy.
files.

® Ant tasks and builds asfirst class citizens.

® Groovy build scripts.

® A rich domain model for describing your build.

In Chapter 2, Overview you will find a detailed overview of Gradle. Otherwise, the tutorials are waiting, have
fun:)

1.1. About this user guide

This user guide, like Gradle itself, is under very active development. Some parts of Gradle aren't documented as
completely as they need to be. Some of the content presented won't be entirely clear or will assume that you
know more about Gradle than you do. We need your help to improve this user guide. You can find out more
about contributing to the documentation at the Gradle web site.

Throughout the user guide, you will find some diagrams that represent dependency relationships between
Gradle tasks. These use something analogous to the UML dependency notation, which renders an arrow from
onetask to the task that the first task depends on.

Page 22 of 448

http://www.gradle.org/contribute

Overview

2.1. Features

Hereisalist of some of Gradl€e's features.

Declar ative builds and build-by-convention
At the heart of Gradle lies a rich extensible Domain Specific Language (DSL) based on Groovy. Gradle
pushes declarative builds to the next level by providing declarative language elements that you can assemble
as you like. Those elements also provide build-by-convention support for Java, Groovy, OSGi, Web and
Scala projects. Even more, this declarative language is extensible. Add your own new language e ements or
enhance the existing ones, thus providing concise, maintainable and comprehensible builds.

Language for dependency based programming
The declarative language lies on top of a general purpose task graph, which you can fully leverage in your
builds. It provides utmost flexibility to adapt Gradle to your unique needs.

Structureyour build
The suppleness and richness of Gradle finally allows you to apply common design principles to your build.
For example, it is very easy to compose your build from reusable pieces of build logic. Inline stuff where
unnecessary indirections would be inappropriate. Don't be forced to tear apart what belongs together (e.g. in
your project hierarchy). Avoid smells like shotgun changes or divergent change that turn your build into a
maintenance nightmare. At last you can create awell structured, easily maintained, comprehensible build.

Deep API
From being a pleasure to be used embedded to its many hooks over the whole lifecycle of build execution,
Gradle alows you to monitor and customize its configuration and execution behavior to its very core.

Gradle scales
Gradle scales very well. It significantly increases your productivity, from simple single project builds up to
huge enterprise multi-project builds. This is true for structuring the build. With the state-of-art incremental
build function, thisis also true for tackling the performance pain many large enterprise builds suffer from.

Multi-project builds
Gradle's support for multi-project build is outstanding. Project dependencies are first class citizens. We
allow you to model the project relationships in a multi-project build as they really are for your problem
domain. Gradle follows your layout not vice versa.

Gradle provides partial builds. If you build a single subproject Gradle takes care of building al the
subprojects that subproject depends on. You can also choose to rebuild the subprojects that depend on a
particular subproject. Together with incremental builds thisis abig time saver for larger builds.

Page 23 of 448

Many ways to manage your dependencies
Different teams prefer different ways to manage their external dependencies. Gradle provides convenient
support for any strategy. From transitive dependency management with remote Maven and Ivy repositories
tojars or directories on the local file system.

Gradleisthefirst build integration tool
Ant tasks are first class citizens. Even more interesting, Ant projects are first class citizens as well. Gradle
provides a deep import for any Ant project, turning Ant targets into native Gradle tasks at runtime. You can
depend on them from Gradle, you can enhance them from Gradle, you can even declare dependencies on
Gradle tasks in your build.xml. The same integration is provided for properties, paths, etc ...

Gradle fully supports your existing Maven or lvy repository infrastructure for publishing and retrieving
dependencies. Gradle aso provides a converter for turning aMaven pom xmi into a Gradle script. Runtime
imports of Maven projects will come soon.

Ease of migration
Gradle can adapt to any structure you have. Therefore you can aways develop your Gradle build in the same
branch where your production build lives and both can evolve in parallel. We usually recommend to write
tests that make sure that the produced artifacts are similar. That way migration is as less disruptive and as
reliable as possible. Thisis following the best-practices for refactoring by applying baby steps.

Groovy

Gradle's build scripts are written in Groovy, not XML. But unlike other approaches this is not for simply
exposing the raw scripting power of a dynamic language. That would just lead to a very difficult to maintain
build. The whole design of Gradle is oriented towards being used as a language, not as a rigid framework.
And Groovy is our glue that allows you to tell your individual story with the abstractions Gradle (or you)
provide. Gradle provides some standard stories but they are not privileged in any form. Thisisfor usamajor
distinguishing feature compared to other declarative build systems. Our Groovy support is not just sugar
coating. The whole Gradle API is fully Groovy-ized. Adding Groovy results in an enjoyable and productive
experience.

The Gradle wrapper
The Gradle Wrapper allows you to execute Gradle builds on machines where Gradle is not installed. Thisis
useful for example for some continuous integration servers. It is also useful for an open source project to
keep the barrier low for building it. The wrapper is aso very interesting for the enterprise. It is a zero
administration approach for the client machines. It also enforces the usage of a particular Gradle version
thus minimizing support issues.

Free and open source
Gradle is an open source project, and is licensed under the ASL.

Page 24 of 448

http://www.gradle.org/license

2.2. Why Groovy?

We think the advantages of an internal DSL (based on a dynamic language) over XML are tremendous when
used in build scripts. There are a couple of dynamic languages out there. Why Groovy? The answer lies in the
context Gradle is operating in. Although Gradle is a general purpose build tool at its core, its main focus are
Java projects. In such projects the team members will be very familiar with Java. We think a build should be as
transparent as possible to all team members.

In that case, you might argue why we don't just use Java as the language for build scripts. We think thisis a
valid question. It would have the highest transparency for your team and the lowest learning curve, but because
of the limitations of Java, such a build language would not be as nice, expressive and powerful asit could be. [1]
Languages like Python, Groovy or Ruby do a much better job here. We have chosen Groovy as it offers by far
the greatest transparency for Java people. Its base syntax is the same as Java's as well as its type system, its
package structure and other things. Groovy provides much more on top of that, but with the common foundation
of Java.

For Java developers with Python or Ruby knowledge or the desire to learn them, the above arguments don't
apply. The Gradle design is well-suited for creating another build script engine in JRuby or Jython. It just
doesn't have the highest priority for us at the moment. We happily support any community effort to create
additional build script engines.

[1] At http://www.defmacro.org/ramblings/lisp.html you find an interesting article comparing Ant, XML, Java
and Lisp. It's funny that the 'if Java had that syntax’ syntax in this article is actually the Groovy syntax.

Page 25 of 448

http://www.defmacro.org/ramblings/lisp.html

3

Tutorials

3.1. Getting Started

The following tutorials introduce some of the basics of Gradle, to help you get started.

Chapter 4, Installing Gradle
Describes how to install Gradle.

Chapter 6, Build Script Basics
Introduces the basic build script elements: projects and tasks.

Chapter 7, Java Quickstart
Shows how to start using Gradl€'s build-by-convention support for Java projects.

Chapter 8, Dependency Management Basics
Shows how to start using Gradl€'s dependency management.

Chapter 9, Groovy Quickstart
Using Gradl€'s build-by-convention support for Groovy projects.

Chapter 10, Web Application Quickstart
Using Gradl€'s build-by-convention support for Web applications.

Page 26 of 448

A

Installing Gradle

4.1. Prerequisites

Gradle requires a Java JDK or JRE to be installed, version 6 or higher (to check, use j ava -versi on).
Gradle ships with its own Groovy library, therefore Groovy does not need to be installed. Any existing Groovy
installation isignored by Gradle.

Gradle uses whatever JDK it finds in your path. Alternatively, you can set the JAVA HOVE environment
variable to point to the installation directory of the desired JDK.

4.2. Download

Y ou can download one of the Gradle distributions from the Gradle web site.

4.3. Unpacking

The Gradle distribution comes packaged as a ZIP. The full distribution contains:

® The Gradle binaries.

® The user guide (HTML and PDF).

* TheDSL reference guide.

® The APl documentation (Javadoc and Groovydoc).

® Extensive samples, including the examples referenced in the user guide, along with some complete and more
complex builds you can use as a starting point for your own build.

® The binary sources. Thisis for reference only. If you want to build Gradle you need to download the source
distribution or checkout the sources from the source repository. See the Gradle web site for details.

4.4. Environment variables

For running Gradle, add GRADLE_HOME/ bi n to your PATH environment variable. Usually, this is sufficient
to run Gradle,

Page 27 of 448

http://www.gradle.org/downloads
http://www.gradle.org/development

4.5. Running and testing your installation

You run Gradle via the gradle command. To check if Gradle is properly installed just type gradle -v. The
output shows the Gradle version and also the local environment configuration (Groovy, VM version, OS, etc.).
The displayed Gradle version should match the distribution you have downloaded.

4.6. VM options

JVM options for running Gradle can be set via environment variables. You can use either GRADLE_OPTS or
JAVA OPTS, or both. JAVA OPTS is by convention an environment variable shared by many Java
applications. A typical use case would be to set the HTTP proxy in JAVA_OPTS and the memory options in
GRADLE_OPTS. Those variables can also be set at the beginning of the gradle or gradlew script.

Note that it's not currently possible to set VM options for Gradle on the command line.

Page 28 of 448

5

Troubleshooting

This chapter is currently awork in progress.

When using Gradle (or any software package), you can run into problems. Y ou may not understand how to use a
particular feature, or you may encounter a defect. Or, you may have a general question about Gradle.

This chapter gives some advice for troubleshooting problems and explains how to get help with your problems.

5.1. Working through problems

If you are encountering problems, one of the first things to try is using the very latest release of Gradle. New
versions of Gradle are released frequently with bug fixes and new features. The problem you are having may
have been fixed in anew release.

If you are using the Gradle Daemon, try temporarily disabling the daemon (you can pass the command line
switch - - no- daenon). More information about troubleshooting the daemon process is located in Chapter 19,
The Gradle Daemon.

5.2. Getting help

The place to go for help with Gradle is http://forums.gradle.org. The Gradle Forums is the place where you can
report problems and ask questions of the Gradle devel opers and other community members.

If something's not working for you, posting a question or problem report to the forums is the fastest way to get
help. It's aso the place to post improvement suggestions or new ideas. The development team frequently posts
news items and announces releases via the forum, making it a great way to stay up to date with the latest Gradle
devel opments.

Page 29 of 448

http://forums.gradle.org

6

Build Script Basics

6.1. Projects and tasks

Everything in Gradle sits on top of two basic concepts. projects and tasks.

Every Gradle build is made up of one or more projects. What a project represents depends on what it is that you
are doing with Gradle. For example, a project might represent a library JAR or a web application. It might
represent a distribution ZIP assembled from the JARs produced by other projects. A project does not necessarily
represent a thing to be built. It might represent a thing to be done, such as deploying your application to staging
or production environments. Don't worry if this seems a little vague for now. Gradl€e's build-by-convention
support adds a more concrete definition for what a project is.

Each project is made up of one or more tasks. A task represents some atomic piece of work which a build
performs. This might be compiling some classes, creating a JAR, generating Javadoc, or publishing some
archivesto arepository.

For now, we will ook at defining some simple tasks in a build with one project. Later chapters will look at
working with multiple projects and more about working with projects and tasks.

6.2. Hello world

Y ou run a Gradle build using the gradle command. The gradle command looks for afilecalled bui | d. gr adl e
in the current directory. (21 We call this bui | d. gr adl e file a build script, although strictly speaking it is a
build configuration script, as we will see later. The build script defines a project and its tasks.

To try this out, create the following build script named bui | d. gr adl e.

Example6.1. Your first build script
buil d. gradl e

task hello {
doLast {

println '"Hello world!

}

In a command-line shell, move to the containing directory and execute the build script withgradl e -q hel | o

Page 30 of 448

Example 6.2. Execution of a build script
Output of gradl e -q hello

> gradle -q hello
Hel 1 o worl d!

What's going on here? This build script defines a single task, called
hel | o, and adds an action to it. When you run gr adl e hel | o,
Gradle executes the hel | o task, which in turn executes the action
you've provided. The action is simply a closure containing some
Groovy code to execute.

If you think this looks similar to Ant's targets, you would be right.
Gradle tasks are the equivalent to Ant targets, but as you will see,
they are much more powerful. We have used a different
terminology than Ant as we think the word task is more expressive
than the word target. Unfortunately this introduces a terminology
clash with Ant, as Ant calls its commands, such asj avac or copy

, tasks. So when we talk about tasks, we always mean Gradle tasks, which are the equivalent to Ant's targets. If

we talk about Ant tasks (Ant commands), we explicitly say Ant task.

6.3. A shortcut task definition

What does - g do?

Most of the examplesin this user
guide are run with the -q
command-line option. This
suppresses Gradle's log
messages, so that only the output
of the tasks is shown. This keeps
the example output in this user
guide a little clearer. You don't
need to use this option if you
don't want to. See Chapter 18,
Logging for more details about
the command-line options which
affect Gradl€e's output.

There is ashorthand way to define atask like our hel | o task above, which is more concise.

Example 6.3. A task definition shortcut
buil d. gradl e

task hello << {
println 'Hello world!"

}

Again, this defines atask called hel | o with a single closure to execute. We will use this task definition style

throughout the user guide.

6.4. Build scripts are code

Gradl€e's build scripts give you the full power of Groovy. As an appetizer, have alook at this:

Page 31 of 448

Example 6.4. Using Groovy in Gradle'stasks
buil d. gradl e

task upper << {
String someString = ' n¥_nAnE

println "Original: " + someString
println "“Upper case: " + soneString.toUpper Case()

Output of gradl e -q upper
> gradle -q upper

Original: my_nAnE
Upper case: MY_NAME

or

Example 6.5. Using Groovy in Gradle stasks
buil d. gradl e

task count << {

4.times { print "$it

}

Output of gr adl e -qg count

> gradle -qg count
0123

6.5. Task dependencies

Asyou probably have guessed, you can declare tasks that depend on other tasks.

Example 6.6. Declaration of task that depends on other task
buil d. gradl e

task hello << {
println "Hello world!"

}

task intro(dependsOn: hello) << {
println "I'm G adl e"

}

Outputof gradle -q intro

> gradle -gq intro
Hel | o worl d!
I'"'m Gadle

To add a dependency, the corresponding task does not need to exist.

Page 32 of 448

Example 6.7. Lazy dependsOn - the other task doesnot exist (yet)
buil d. gradl e

task taskX(dependsOn: 'taskY') << {
println 'taskX

}
task taskY << {

println 'taskY

}

Output of gradl e -q taskX

> gradle -q taskX
t askY
taskX

The dependency of t askX to t askY is declared before t askY is defined. This is very important for
multi-project builds. Task dependencies are discussed in more detail in Section 15.4, “Adding dependenciesto a
task”.

Please notice that you can't use shortcut notation (see Section 6.8, “ Shortcut notations’) when referring to a task
that is not yet defined.

6.6. Dynamic tasks

The power of Groovy can be used for more than defining what a task does. For example, you can also use it to
dynamically create tasks.

Example 6.8. Dynamic creation of a task

buil d. gradl e

4.tinmes { counter ->
task "task$counter" << {

println "I'mtask nunber $counter"

}

Output of gradl e -qg taskl

> gradle -q taskl
I'mtask nunber 1

6.7. Manipulating existing tasks

Once tasks are created they can be accessed via an API. For instance, you could use this to dynamically add
dependencies to atask, at runtime. Ant doesn't allow anything like this.

Page 33 of 448

Example 6.9. Accessing atask via API - adding a dependency

bui I d. gradl e

4.times { counter ->
task "task$counter" << {
println "I'mtask nunber $counter"

}

}
t ask0. dependsOn task2, task3

Output of gradl e -qg taskO

> gradle -q taskO
I'"mtask nunber 2
I'"mtask nunber 3
I'"mtask nunber O

Or you can add behavior to an existing task.

Example 6.10. Accessing a task via API - adding behaviour
buil d. gradl e

task hello << {

println 'Hello Earth'
}
hel | 0. doFi rst {

println 'Hello Venus'
}
hel | o. doLast {

println 'Hello Mars'
}
hello << {

println 'Hello Jupiter’

}

Output of gradl e -q hell o

> gradle -q hello
Hel | o Venus
Hello Earth
Hell o Mars

Hel 1l o Jupiter

The calls doFi r st and doLast can be executed multiple times. They add an action to the beginning or the
end of the task's actions list. When the task executes, the actions in the action list are executed in order. The <<
operator issimply an aliasfor doLast .

6.8. Shortcut notations

As you might have noticed in the previous examples, there is a convenient notation for accessing an existing
task. Each task is available as a property of the build script:

Page 34 of 448

Example 6.11. Accessing task as a property of the build script
buil d. gradl e

task hello << {
println 'Hello world!"

}
hel | o. doLast {
println "G eetings fromthe $hello. nane task."

}

Output of gradl e -q hello

> gradle -q hello
Hel 1 o worl d!
Greetings fromthe hello task.

This enables very readable code, especially when using the tasks provided by the plugins, like the comnpi | e
task.

6.9. Extratask properties

Y ou can add your own properties to atask. To add a property named nyPr operty, setext. myProperty to
an initial value. From that point on, the property can be read and set like a predefined task property.

Example 6.12. Adding extra propertiesto a task

buil d. gradl e

task myTask {
ext. myProperty = "nyVal ue"

}

task printTaskProperties << {
println myTask. myProperty

}

Output of gradl e -q print TaskProperties

> gradle -q printTaskProperties
nyVal ue

Extra properties aren't limited to tasks. Y ou can read more about them in Section 13.4.2, “Extra properties’.

6.10. Using Ant Tasks

Ant tasks are first-class citizens in Gradle. Gradle provides excellent integration for Ant tasks by simply relying
on Groovy. Groovy is shipped with the fantastic Ant Bui | der . Using Ant tasks from Gradle is as convenient
and more powerful than using Ant tasks from abui | d. xm file. From the example below, you can learn how
to execute Ant tasks and how to access Ant properties:

Page 35 of 448

Example 6.13. Using AntBuilder to execute ant.loadfile tar get

bui I d. gradl e

task loadfile << {
def files = file('../antLoadfileResources').listFiles().sort()
files.each { File file ->
if (file.isFile()) {
ant.loadfile(srcFile: file, property: file.nane)

println " *** $file. name ***"
println "${ant.properties[file.nanme]}"

Output of gradl e -q | oadfile

> gradle -q loadfile

*** agile.mani festo.txt ***

I ndividuals and interactions over processes and tools
Wor ki ng software over conprehensive docunmentation
Cust omer col | aboration over contract negotiation
Respondi ng to change over follow ng a plan

*** gradl e. mani festo. txt ***

Make the inpossible possible, make the possible easy and nake the easy el egant.

(i nspired by Mdshe Fel denkrai s)

There is lots more you can do with Ant in your build scripts. You can find out more in Chapter 17, Using Ant

from Gradle.

6.11. Using methods

Gradle scales in how you can organize your build logic. The first level of organizing your build logic for the

example above, is extracting a method.

Page 36 of 448

Example 6.14. Using methods to organize your build logic
buil d. gradl e

task checksum << {
fileList('../antLoadfil eResources').each {File file ->
ant . checksum(file: file, property: "cs $file.nane")
println "$file. name Checksum ${ant.properties["cs_$file.name"]}"

}

task |oadfile << {
fileList('../antLoadfil eResources').each {File file ->

ant.loadfile(srcFile: file, property: file.nane)
println "I'mfond of $file.nane"

}

File[] fileList(String dir) {
file(dir).listFiles({file ->file.isFile() } as FileFilter).sort()
}

Output of gradl e -q | oadfile
> gradle -q loadfile

I'"'mfond of agile.manifesto.txt
I"'mfond of gradle. manifesto.txt

Later you will see that such methods can be shared among subprojects in multi-project builds. If your build
logic becomes more complex, Gradle offers you other very convenient ways to organize it. We have devoted a
whole chapter to this. See Chapter 60, Organizing Build Logic.

6.12. Default tasks

Gradle allows you to define one or more default tasks for your build.

Page 37 of 448

Example 6.15. Defining a default tasks
buil d. gradl e

def aul t Tasks 'clean', 'run'

task clean << {
println 'Default C eaning!’

}

task run << {
println 'Default Running!'

}

task other << {
println "I'mnot a default task!"

}

Output of gradl e -q

> gradle -q
Def aul t C eani ng!
Def aul t Runni ng!

Thisisequivalent to running gr adl e cl ean run. Inamulti-project build every subproject can have its own
specific default tasks. If a subproject does not specify default tasks, the default tasks of the parent project are
used (if defined).

6.13. Configure by DAG

Aswe later describe in full detail (see Chapter 56, The Build Lifecycle), Gradle has a configuration phase and an
execution phase. After the configuration phase, Gradle knows all tasks that should be executed. Gradle offers
you a hook to make use of this information. A use-case for this would be to check if the release task is among
the tasks to be executed. Depending on this, you can assign different values to some variables.

In the following example, execution of the di stri buti on and r el ease tasks results in different value of
thever si on variable.

Page 38 of 448

Example 6.16. Different outcomes of build depending on chosen tasks
buil d. gradl e

task distribution << {
println "We build the zip with version=3$versi on"

}

task rel ease(dependsOn: 'distribution') << {
println 'We rel ease now

}

gradl e. t askG aph. whenReady {taskG aph ->
i f (taskG aph. hasTask(rel ease)) {
version = '1.0'
} else {
version = ' 1. 0- SNAPSHOT'

}

Output of gradl e -q di stribution

> gradle -q distribution
We build the zip with version=1. 0- SNAPSHOT

Output of gradl e -q rel ease
> gradle -qg rel ease

We build the zip with version=1.0
W rel ease now

The important thing is that whenReady affects the release task before the release task is executed. This works
even when the release task is not the primary task (i.e., the task passed to the gradle command).

0.14. Where to next?

In this chapter, we have had a first look at tasks. But this is not the end of the story for tasks. If you want to
jump into more of the details, have alook at Chapter 15, More about Tasks.

Otherwise, continue on to the tutorials in Chapter 7, Java Quickstart and Chapter 8, Dependency Management
Basics.

[2] There are command line switches to change this behavior. See Appendix D, Gradle Command Line)

Page 39 of 448

v

Java Quickstart

7.1. The Java plugin

As we have seen, Gradle is a general-purpose build tool. It can build pretty much anything you care to
implement in your build script. Out-of-the-box, however, it doesn't build anything unless you add code to your
build script to do so.

Most Java projects are pretty similar as far as the basics go: you need to compile your Java source files, run
some unit tests, and create a JAR file containing your classes. It would be niceif you didn't have to code al this
up for every project. Luckily, you don't have to. Gradle solves this praoblem through the use of plugins. A plugin
is an extension to Gradle which configures your project in some way, typically by adding some pre-configured
tasks which together do something useful. Gradle ships with a number of plugins, and you can easily write your
own and share them with others. One such plugin is the Java plugin. This plugin adds some tasks to your
project which will compile and unit test your Java source code, and bundleit into a JAR file.

The Java plugin is convention based. This means that the plugin defines default values for many aspects of the
project, such as where the Java source files are located. If you follow the convention in your project, you
generally don't need to do much in your build script to get a useful build. Gradle alows you to customize your
project if you don't want to or cannot follow the convention in some way. In fact, because support for Java
projects is implemented as a plugin, you don't have to use the plugin at al to build a Java project, if you don't
want to.

We have in-depth coverage with many examples about the Java plugin, dependency management and
multi-project builds in later chapters. In this chapter we want to give you an initial idea of how to use the Java
plugin to build a Java project.

7.2. A basic Java project

Let'slook at asimple example. To use the Java plugin, add the following to your build file:

Example 7.1. Using the Java plugin

buil d. gradl e

apply plugin: 'java'

Note: The code for this example can be found at sanpl es/ j aval/ qui ckst art inthe‘-al’ distribution
of Gradle.

Page 40 of 448

This is al you need to define a Java project. This will apply the Java plugin to your project, which adds a
number of tasksto your project.

Gradle expects to find your production source code under sr ¢/ mai n/ j ava

and y.our test source cod.e under src/t est-/j av.a. In adc?ltlon, What tasks are

any fl_ls under src/ mai n/ r(_asour ces will be included in the available?

JAR file asresources, and any filesunder src/ t est / r esour ces

will be included in the classpath used to run the tests. All output Youcanusegradl e tasks to

files are created under the bui | d directory, with the JAR file list the tasks of a project. This

endingupinthebui | d/ | i bs directory. will let you see the tasks that the
Java plugin has added to your

7.2.1. Building the project project.

The Java plugin adds quite a few tasks to your project. However,

there are only a handful of tasks that you will need to use to build

the project. The most commonly used task is the bui | d task, which does a full build of the project. When you
run gr adl e bui | d, Gradle will compile and test your code, and create a JAR file containing your main
classes and resources:

Example 7.2. Building a Java proj ect
Output of gradl e build

> gradle build
:conpi |l eJava

: processResour ces
:cl asses

tjar

:assenbl e
:conpi |l eTest Java
. processTest Resour ces
:testC asses
itest

: check

cbuild

BU LD SUCCESSFUL

Total tine: 1 secs

Some other useful tasks are:

clean
Deletesthe bui | d directory, removing all built files.

assemble
Compiles and jars your code, but does not run the unit tests. Other plugins add more artifacts to this task.
For example, if you use the War plugin, this task will also build the WAR file for your project.

check
Compiles and tests your code. Other plugins add more checksto thistask. For example, if you usethe checkst

Page 41 of 448

plugin, this task will also run Checkstyle against your source code.

7.2.2. External dependencies

Usually, a Java project will have some dependencies on external JAR files. To reference these JAR filesin the
project, you need to tell Gradle where to find them. In Gradle, artifacts such as JAR files, are located in a
repository. A repository can be used for fetching the dependencies of a project, or for publishing the artifacts of
aproject, or both. For this example, we will use the public Maven repository:

Example 7.3. Adding Maven repository

buil d. gradl e

repositories {

mavenCentral ()

}

Let's add some dependencies. Here, we will declare that our production classes have a compile-time dependency
on commons collections, and that our test classes have a compile-time dependency on junit:

Example 7.4. Adding dependencies

buil d. gradl e

dependenci es {
conpi |l e group: 'comons-col |l ections', nane: 'commons-collections', version: '3
testConpile group: 'junit', nane: 'junit', version: '4. +

Y ou can find out more in Chapter 8, Dependency Management Basics.

7.2.3. Customizing the project

The Java plugin adds a number of properties to your project. These properties have default values which are
usually sufficient to get started. It's easy to change these values if they don't suit. Let's look at this for our
sample. Here we will specify the version number for our Java project, along with the Java version our source is
written in. We also add some attributes to the JAR manifest.

Example 7.5. Customization of MANIFEST.MF
bui I d. gradl e

sourceConpatibility =

version = '1. 0

jar {
mani fest {

attributes 'Inplenmentation-Title': 'Gadle Quickstart',
"I npl enent ati on-Version': version

The tasks which the Java plugin adds are regular tasks, exactly the
same as if they were declared in the build file. This means you can

Page 42 of 448

use any of the mechanisms shown in earlier chapters to customize What properti es are
these tasks. For example, you can set the properties of a task, add avallable?

behaviour to atask, change the dependencies of atask, or replace a
task entirely. In our sample, we will configure the t est task,
which is of type Test , to add a system property when the tests are

Youcanusegradl e properties
to list the properties of a project.
This will allow you to see the

executed:

properties added by the Java
Example 7.6. Adding a test system property plugin, and their defaullt values.
buil d. gradl e

test {

systenProperties 'property': 'val ue'

}

7.2.4. Publishing the JAR file

Usually the JAR file needs to be published somewhere. To do this, you need to tell Gradle where to publish the
JAR file. In Gradle, artifacts such as JAR files are published to repositories. In our sample, we will publish to a
local directory. You can also publish to aremote location, or multiple locations.

Example 7.7. Publishing the JAR file
buil d. gradl e
upl oadAr chi ves {

repositories {
flatDir {

dirs 'repos'

To publish the JAR file, run gr adl e upl oadAr chi ves.

7.2.5. Creating an Eclipse project

To create the Eclipse-specific descriptor files, like . proj ect , you need to add another plugin to your build
file:

Example 7.8. Eclipse plugin

bui I d. gradl e

apply plugin: 'eclipse'

Now execute gr adl e ecl i pse command to generate Eclipse project files. More information about the ecl i pse¢

task can be found in Chapter 38, The Eclipse Plugins.

7.2.6. Summary

Here's the complete build file for our sample:

Page 43 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.testing.Test.html

Example 7.9. Java example - complete build file

bui I d. gradl e

apply plugin: 'java'
apply plugin: 'eclipse

sourceConpatibility = 1.5
version = '1. 0
jar {
mani f est {
attributes 'Inplenentation-Title': 'Gadle Quickstart',
"1 npl enent ati on-Version': version

}

repositories {
mavenCent ral ()

}

dependenci es {
conpil e group: ' commons-col |l ections', nane: 'commons-col |l ections', version: '3
testConpile group: "junit', name: 'junit', version: '4.+

}

test {
systenProperties 'property': 'val ue'

}

upl oadAr chi ves {
repositories {
flatDir {
dirs 'repos'

7.3. Multi-project Java build

Now let'slook at atypical multi-project build. Below is the layout for the project:

Example 7.10. M ulti-project build - hierarchical layout
Build layout

mul ti project/
api /

servi ces/ webservi ce/
shar ed/
servi ces/ shared/

Note: The code for this example can be found at sanpl es/java/ nul ti project in the ‘-al’
distribution of Gradle.

Page 44 of 448

Here we have four projects. Project api produces a JAR file which is shipped to the client to provide them a
Javaclient for your XML webservice. Project webser vi ce isawebapp which returns XML. Project shar ed
contains code used both by api and webser vi ce. Project ser vi ces/ shar ed has code that depends on
the shar ed project.

7.3.1. Defining a multi-project build

To define a multi-project build, you need to create a settings file. The settings file lives in the root directory of
the source tree, and specifies which projects to include in the build. It must be called set t i ngs. gr adl e. For
this example, we are using a simple hierarchical layout. Here is the corresponding settings file:

Example 7.11. Multi-project build - settings.gradlefile

settings.gradle

i nclude "shared", "api", "services:webservice", "services: shared"

Y ou can find out more about the settings file in Chapter 57, Multi-project Builds.

7.3.2. Common configuration

For most multi-project builds, there is some configuration which is common to al projects. In our sample, we
will define this common configuration in the root project, using a technique called configuration injection.
Here, the root project is like a container and the subpr oj ect s method iterates over the elements of this
container - the projects in this instance - and injects the specified configuration. This way we can easily define
the manifest content for all archives, and some common dependencies:

Example 7.12. Multi-project build - common configuration
buil d. gradl e
subproj ects {
apply plugin: 'java'
apply plugin: 'eclipse-wp'

repositories {
mavenCentral ()

}

dependenci es {

testConpile '"junit:junit:4. 11

}

version = '1.0'

jar {
mani fest.attri butes provider: 'gradle

}

Notice that our sample applies the Java plugin to each subproject. This means the tasks and configuration
properties we have seen in the previous section are available in each subproject. So, you can compile, test, and
JAR all the projects by running gr adl e bui | d from the root project directory.

Page 45 of 448

Also note that these plugins are only applied within the subpr oj ect s section, not at the root level, so the root
build will not expect to find Java source files in the root project, only in the subprojects.

7.3.3. Dependencies between projects

Y ou can add dependencies between projects in the same build, so that, for example, the JAR file of one project
is used to compile another project. Inthe api build file we will add a dependency on the shar ed project. Due
to this dependency, Gradle will ensure that project shar ed aways gets built before project api .

Example 7.13. Muulti-project build - dependencies between projects

api / buil d. gradl e

dependenci es {
conpi l e project(':shared")

}

See Section 57.7.1, “Disabling the build of dependency projects’ for how to disable this functionality.

7.3.4. Creating a distribution

We also add a distribution, that gets shipped to the client:

Example 7.14. M ulti-project build - distribution file
api / buil d. gradl e

task dist(type: Zip) {
dependsOn spi Jar
from'src/dist'
into('libs") {
from spi Jar. ar chi vePat h
from configurations. runtime

}

artifacts {
ar chi ves di st

}

7.4. Where to next?

In this chapter, you have seen how to do some of the things you commonly need to build a Java based project.
This chapter is not exhaustive, and there are many other things you can do with Java projectsin Gradle. Y ou can
find out more about the Java plugin in Chapter 23, The Java Plugin, and you can find more sample Java projects
inthe sanpl es/ j ava directory in the Gradle distribution.

Otherwise, continue on to Chapter 8, Dependency Management Basics.

Page 46 of 448

8

Dependency M anagement Basics

This chapter introduces some of the basics of dependency management in Gradle.

8.1. What is dependency management?

Very roughly, dependency management is made up of two pieces. Firstly, Gradle needs to know about the
things that your project needs to build or run, in order to find them. We call these incoming files the

dependencies of the project. Secondly, Gradle needs to build and upload the things that your project produces.
We call these outgoing files the publications of the project. Let'slook at these two pieces in more detail :

Most projects are not completely self-contained. They need files built by other projects in order to be compiled
or tested and so on. For example, in order to use Hibernate in my project, | need to include some Hibernate jars
in the classpath when | compile my source. To run my tests, | might also need to include some additional jarsin
the test classpath, such as a particular JDBC driver or the Ehcache jars.

These incoming files form the dependencies of the project. Gradle allows you to tell it what the dependencies of
your project are, so that it can take care of finding these dependencies, and making them available in your build.
The dependencies might need to be downloaded from a remote Maven or Ivy repository, or located in alocal
directory, or may need to be built by another project in the same multi-project build. We call this process
dependency resolution.

Note that this feature provides a major advantage over Ant. With Ant, you only have the ability to specify
absolute or relative paths to specific jars to load. With Gradle, you simply declare the “names’ of your
dependencies, and other layers determine where to get those dependencies from. Y ou can get similar behavior
from Ant by adding Apache Ivy, but Gradle does it better.

Often, the dependencies of a project will themselves have dependencies. For example, Hibernate core requires
several other libraries to be present on the classpath with it runs. So, when Gradle runs the tests for your project,
it also needs to find these dependencies and make them available. We call these transitive dependencies.

The main purpose of most projectsis to build some files that are to be used outside the project. For example, if
your project produces a Java library, you need to build a jar, and maybe a source jar and some documentation,
and publish them somewhere.

These outgoing files form the publications of the project. Gradle also takes care of this important work for you.
You declare the publications of your project, and Gradle take care of building them and publishing them
somewhere. Exactly what “publishing” means depends on what you want to do. You might want to copy the
files to a local directory, or upload them to a remote Maven or Ivy repository. Or you might use the files in
another project in the same multi-project build. We call this process publication.

Page 47 of 448

8.2. Declaring your dependencies

Let'slook at some dependency declarations. Here's a basic build script:

Example 8.1. Declaring dependencies
buil d. gradl e
apply plugin: 'java'

repositories {
mavenCentral ()

}

dependenci es {
conpi l e group: 'org. hibernate', name: 'hibernate-core', version: '3.6.7.Final
testConpile group: "junit', name: 'junit', version: '4. +

What's going on here? This build script says a few things about the project. Firstly, it states that Hibernate core
3.6.7.Final is required to compile the project's production source. By implication, Hibernate core and its
dependencies are also required at runtime. The build script also states that any junit >= 4.0 is required to
compile the project's tests. It also tells Gradle to look in the Maven central repository for any dependencies that
arerequired. The following sections go into the details.

8.3. Dependency configurations

In Gradle dependencies are grouped into configurations. A configuration is simply a named set of
dependencies. We will refer to them as dependency configurations. You can use them to declare the external
dependencies of your project. Aswe will seelater, they are also used to declare the publications of your project.

The Java plugin defines a number of standard configurations. These configurations represent the classpaths that
the Java plugin uses. Some are listed below, and you can find more details in Table 23.5, “Java plugin -
dependency configurations’.

compile
The dependencies required to compile the production source of the project.

runtime
The dependencies required by the production classes at runtime. By default, also includes the compile time
dependencies.

testCompile
The dependencies required to compile the test source of the project. By default, also includes the compiled
production classes and the compile time dependencies.

testRuntime
The dependencies required to run the tests. By default, also includes the compile, runtime and test compile
dependencies.

Page 48 of 448

Various plugins add further standard configurations. Y ou can also define your own custom configurations to use
in your build. Please see Section 51.3, “Dependency configurations” for the details of defining and customizing
dependency configurations.

8.4. External dependencies

There are various types of dependencies that you can declare. One such type is an external dependency. Thisa
dependency on some files built outside the current build, and stored in arepository of some kind, such as Maven
central, or a corporate Maven or lvy repository, or adirectory in the local file system.

To define an externa dependency, you add it to a dependency configuration:

Example 8.2. Definition of an exter nal dependency
buil d. gradl e

dependenci es {

conpil e group: 'org.hibernate', nane: 'hibernate-core', version: '3.6.7.Final

}

An external dependency is identified using gr oup, nane and ver si on attributes. Depending on which kind
of repository you are using, gr oup and ver si on may be optional.

The shortcut form for declaring external dependencieslookslike“ gr oup: nane: ver si on”.

Example 8.3. Shortcut definition of an external dependency
buil d. gradl e

dependenci es {

conpil e 'org. hi bernate: hi bernate-core: 3.6. 7. Final'

}

To find out more about defining and working with dependencies, have alook at Section 51.4, “How to declare
your dependencies’.

8.5. Repositories

How does Gradle find the files for external dependencies? Gradle looks for them in a repository. A repository is
realy just a collection of files, organized by gr oup, nane and ver si on. Gradle understands several different
repository formats, such as Maven and vy, and severa different ways of accessing the repository, such as using
the locdl file system or HTTP.

By default, Gradle does not define any repositories. Y ou need to define at least one before you can use external
dependencies. One option is use the Maven central repository:

Page 49 of 448

Example 8.4. Usage of Maven central repository

bui I d. gradl e

repositories {

mavenCent ral ()

}

Or aremote Maven repository:

Example 8.5. Usage of a remote Maven repository
buil d. gradl e

repositories {
maven {
url "http://repo. nyconpany. conf naven2"

}

Or aremote Ivy repository:

Example 8.6. Usage of aremote | vy directory
buil d. gradl e

repositories {
ivy {
url "http://repo. myconpany. com repo"

}

Y ou can a'so have repositories on the local file system. Thisworks for both Maven and Ivy repositories.

Example 8.7. Usage of alocal Ivy directory
buil d. gradl e
repositories {

ivy {
/1 URL can refer to a local directory

url "../local -repo"

A project can have multiple repositories. Gradle will look for a dependency in each repository in the order they
are specified, stopping at the first repository that contains the requested module.

To find out more about defining and working with repositories, have alook at Section 51.6, “Repositories’.

Page 50 of 448

8.6. Publishing artifacts

Dependency configurations are also used to publish files.[3l We call these files publication artifacts, or usually
just artifacts.

The plugins do a pretty good job of defining the artifacts of a project, so you usually don't need to do anything
special to tell Gradle what needs to be published. However, you do need to tell Gradle where to publish the
artifacts. Y ou do this by attaching repositories to the upl oadAr chi ves task. Here's an example of publishing
to aremote lvy repository:

Example 8.8. Publishing to an Ivy repository

buil d. gradl e

upl oadAr chi ves {
repositories {
vy {
credentials {
user nane "usernane"
password " pw'

}

url "http://repo. myconpany. conf

Now, when you run gr adl e upl oadAr chi ves, Gradle will build and upload your Jar. Gradle will also
generate and upload ani vy. xm aswell.

Y ou can aso publish to Maven repositories. The syntax is slightly different.l*] Note that you also need to apply
the Maven plugin in order to publish to a Maven repository. when this is in place, Gradle will generate and
upload apom xm .

Example 8.9. Publishing to a Maven repository

buil d. gradl e

apply plugin: 'nmaven'

upl oadAr chi ves {
repositories {

mavenDepl oyer {
repository(url: "file://Ilocal host/tnp/ nyRepo/")

To find out more about publication, have alook at Chapter 52, Publishing artifacts.

Page 51 of 448

8.7. Where to next?

For all the details of dependency resolution, see Chapter 51, Dependency Management, and for artifact
publication see Chapter 52, Publishing artifacts.

If you are interested in the DSL elements mentioned here, have alook at Pr oj ect . confi gurati ons{},
Proj ect.repositories{} andProj ect. dependenci es{}.

Otherwise, continue on to some of the other tutorias.

[3] We think thisis confusing, and we are gradually teasing apart the two conceptsin the Gradle DSL.

[4] We are working to make the syntax consistent for resolving from and publishing to Maven repositories.

Page 52 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:configurations(groovy.lang.Closure)
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:dependencies(groovy.lang.Closure)

9

Groovy Quickstart

To build a Groovy project, you use the Groovy plugin. This plugin extends the Java plugin to add Groovy
compilation capabilities to your project. Your project can contain Groovy source code, Java source code, or a
mix of the two. In every other respect, a Groovy project is identical to a Java project, which we have aready
seen in Chapter 7, Java Quickstart.

9.1. A basic Groovy project

Let'slook at an example. To use the Groovy plugin, add the following to your build file:

Example 9.1. Groovy plugin

bui I d. gradl e

apply plugin: 'groovy'

Note: The code for this example can be found at sanpl es/ gr oovy/ qui ckstart in the ‘-al’
distribution of Gradle.

This will also apply the Java plugin to the project, if it has not already been applied. The Groovy plugin extends
the conpi | e task to look for source files in directory sr ¢/ mai n/ gr oovy, and the conpi | eTest task to
look for test source files in directory sr ¢/t est/ gr oovy. The compile tasks use joint compilation for these
directories, which means they can contain a mixture of Java and Groovy source files.

To use the Groovy compilation tasks, you must also declare the Groovy version to use and where to find the
Groovy libraries. You do this by adding a dependency to the gr oovy configuration. The conpil e
configuration inherits this dependency, so the Groovy libraries will be included in classpath when compiling
Groovy and Java source. For our sample, we will use Groovy 2.2.0 from the public Maven repository:

Example 9.2. Dependency on Groovy

buil d. gradle

repositories {
mavenCentral ()

}

dependenci es {
conpi |l e ' org. codehaus. groovy: groovy-al | : 2. 3. 6'

}

Page 53 of 448

Here is our complete build file:

Example 9.3. Groovy example - complete build file

buil d. gradl e

apply plugin: 'eclipse'
apply plugin: 'groovy

repositories {
mavenCentral ()

}

dependenci es {
conpi l e ' org. codehaus. groovy: groovy-all:2.3.6
testConpile "junit:junit:4.11

Running gr adl e bui | d will compile, test and JAR your project.

9.2. Summary

This chapter describes a very simple Groovy project. Usually, areal project will require more than this. Because
a Groovy project is a Java project, whatever you can do with a Java project, you can also do with a Groovy
project.

You can find out more about the Groovy plugin in Chapter 24, The Groovy Plugin, and you can find more
sample Groovy projectsin the sanpl es/ gr oovy directory in the Gradle distribution.

Page 54 of 448

10

Web Application Quickstart

This chapter isawork in progress.

This chapter introduces the Gradle support for web applications. Gradle provides two plugins for web
application development: the War plugin and the Jetty plugin. The War plugin extends the Java plugin to build a
WAR file for your project. The Jetty plugin extends the War plugin to allow you to deploy your web application
to an embedded Jetty web container.

10.1. Building aWAR file

To build aWAR file, you apply the War plugin to your project:

Example 10.1. War plugin
buil d. gradl e

apply plugin: "war’

Note: The code for this example can be found at sanpl es/ webAppl i cati on/ qui ckstart inthe
‘-al’ distribution of Gradle.

This also applies the Java plugin to your project. Running gr adl e bui | d will compile, test and WAR your
project. Gradle will look for the source files to include in the WAR file in src/ mai n/ webapp. Your
compiled classes and their runtime dependencies are also included in the WAR file, in the WEB- | NF/ cl asses
and VEEB- | NF/ | i b directories, respectively.

. Groovy web
10.2. Running your web e
application | .
You can combine multiple
To run your web application, you apply the Jetty plugin to your pluginsin asingle project, so you
project: can use the War and Groovy

plugins together to build a
Groovy based web application.
The appropriate Groovy libraries

Page 55 of 448

Example 10.2. Running web application with Jetty plugin will be added to the WAR file for

bui | d. gradl e you.

apply plugin: '"jetty'

This also applies the War plugin to your project. Running gr adl e j ett yRun will run your web application
in an embedded Jetty web container. Running gr adl e j et t yRunWar will build the WAR file, and then run
it in an embedded web container.

TODO: which url, configure port, uses source files in place and can edit your files and rel oad.

10.3. Summary

Y ou can find out more about the War plugin in Chapter 26, The War Plugin and the Jetty plugin in Chapter 28,
The Jetty Plugin. You can find more sample Java projects in the sanpl es/ webAppl i cati on directory in
the Gradle distribution.

Page 56 of 448

11

Using the Gradle Command-Line

This chapter introduces the basics of the Gradle command-line. You run a build using the gradle command,
which you have already seen in action in previous chapters.

11.1. Executing multiple tasks

Y ou can execute multiple tasks in a single build by listing each of the tasks on the command-line. For example,
the command gr adl e conpi |l e test will executetheconpi | e andt est tasks. Gradle will execute the
tasks in the order that they are listed on the command-line, and will also execute the dependencies for each task.
Each task is executed once only, regardless of how it came to be included in the build: whether it was specified
on the command-line, or as a dependency of another task, or both. Let'slook at an example.

Below four tasks are defined. Both di st andt est depend on the conpi | e task. Running gr adl e di st test
for this build script resultsin the conpi | e task being executed only once.

Figure 11.1. Task dependencies

compile compileTest (thu
test

Page 57 of 448

Example 11.1. Executing multiple tasks
buil d. gradl e

task conpile << {
println 'conpiling source'

}

task conpil eTest (dependsOn: conpile) << {
println 'conpiling unit tests'

}

task test(dependsOn: [conpile, conpileTest]) << {
println 'running unit tests'

}

task di st (dependsOn: [conpile, test]) << {
println '"building the distribution'

}

Output of gr adl e di st test

> gradl e dist test

:conpile

conpi l i ng source
:conpi | eTest
conpiling unit tests
‘test

running unit tests

2 di st

buil ding the distribution
BUI LD SUCCESSFUL

Total tine: 1 secs

Each task is executed only once, sogr adl e t est test isexactlythesameasgradl e test.

11.2. Excluding tasks

Y ou can exclude a task from being executed using the - x command-line option and providing the name of the
task to exclude. Let's try this with the sample build file above.

Example 11.2. Excluding tasks
Output of gradl e di st -x test

> gradle dist -x test

:conpile
conpi l i ng source
- di st

bui l ding the distribution
BUI LD SUCCESSFUL

Total tinme: 1 secs

Page 58 of 448

Y ou can see from the output of this example, that thet est task is not executed, even though it is a dependency
of the di st task. You will also notice that the t est task's dependencies, such as conpi | eTest are not
executed either. Those dependencies of t est that are required by another task, such as conpi | e, are still
executed.

11.3. Continuing the build when afailure occurs

By default, Gradle will abort execution and fail the build as soon as any task fails. This allows the build to
complete sooner, but hides other failures that would have occurred. In order to discover as many failures as
possiblein asingle build execution, you can usethe - - cont i nue option.

When executed with - - conti nue, Gradle will execute every task to be executed where all of the
dependencies for that task completed without failure, instead of stopping as soon as the first failure is
encountered. Each of the encountered failures will be reported at the end of the build.

If atask fails, any subsequent tasks that were depending on it will not be executed, asit is not safe to do so. For
example, tests will not run if there is a compilation failure in the code under test; because the test task will
depend on the compilation task (either directly or indirectly).

11.4. Task name abbreviation

When you specify tasks on the command-line, you don't have to provide the full name of the task. You only
need to provide enough of the task name to uniquely identify the task. For example, in the sample build above,
you can executetask di st by running gr adl e d:

Example 11.3. Abbreviated task name

Output of gr adl e di

> gradle di

:conpile

conpi | i ng source
:conpi | eTest
conpiling unit tests
(test

running unit tests

1 di st

buil ding the distribution
BUI LD SUCCESSFUL

Total tine: 1 secs

Y ou can a'so abbreviate each word in a camel case task hame. For example, you can execute task conpi | eTest
by running gr adl e conpTest orevengradl e cT

Page 59 of 448

Example 11.4. Abbreviated camel case task name
Output of gradl e cT

> gradle cT

:conpile
conpi l i ng source
:conpi | eTest

conpiling unit tests
BUI LD SUCCESSFUL

Total tinme: 1 secs

Y ou can also use these abbreviations with the - x command-line option.

11.5. Selecting which build to execute

When you run the gradle command, it looks for abuild file in the current directory. Y ou can use the - b option
to select another build file. If you use - b optionthen set ti ngs. gr adl e fileis not used. Example:

Example 11.5. Selecting the project using a build file

subdi r/ myproj ect. gradl e

task hello << {

println "using build file '$buildFile.name' in '$buildFile.parentFile.nane'."

}

Output of gradl e -q -b subdir/nyproject.gradle hello

> gradle -q -b subdir/myproject.gradle hello
using build file "myproject.gradle' in 'subdir'.

Alternatively, you can use the - p option to specify the project directory to use. For multi-project builds you
should use - p option instead of - b option.

Example 11.6. Selecting the project using project directory
Outputof gradle -q -p subdir hello

> gradle -gq -p subdir hello
using build file "build.gradle' in 'subdir'.

11.6. Obtaining information about your build

Gradle provides several built-in tasks which show particular details of your build. This can be useful for
understanding the structure and dependencies of your build, and for debugging problems.

In addition to the built-in tasks shown below, you can also use the project report plugin to add tasks to your
project which will generate these reports.

Page 60 of 448

11.6.1. Listing projects

Running gr adl e proj ects gives you a list of the sub-projects of the selected project, displayed in a

hierarchy. Here is an example:

Example 11.7. Obtaining infor mation about projects
Output of gradl e -q projects
> gradle -q projects

Root proj ect

Root project 'projectReports'
+--- Project ':api' - The shared APl for the application
\--- Project ':webapp' - The Web application inplenmentation

To see a list of the tasks of a project, run gradl e <project-path>:tasks

For exanple, try running gradle :api:tasks

The report shows the description of each project, if specified. You can provide a description for a project by

setting thedescri pti on property:

Example 11.8. Providing a description for a project
buil d. gradl e

description = ' The shared APl for the application'

11.6.2. Listing tasks

Running gr adl e tasks gives you a list of the main tasks of the selected project. This report shows the
default tasks for the project, if any, and a description for each task. Below is an example of this report:

Page 61 of 448

Example 11.9. Obtaining information about tasks
Output of gradl e -q tasks

> gradle -q tasks

Al'l tasks runnable fromroot project

Default tasks: dists

Bui |l d tasks

clean - Deletes the build directory (build)
dists - Builds the distribution

libs - Builds the JAR

Buil d Setup tasks
init - Initializes a new Gradl e build. [incubating]
wrapper - Cenerates Gradle wapper files. [incubating]

Hel p tasks

conponents - Displays the conmponents produced by root project 'projectReports'. [incu
dependenci es - Displays all dependencies declared in root project 'projectReports'.
dependencyl nsight - Displays the insight into a specific dependency in root project
hel p - Displays a hel p nessage.

projects - Displays the sub-projects of root project 'projectReports'.

properties - Displays the properties of root project 'projectReports'.

tasks - Displays the tasks runnable fromroot project 'projectReports' (sonme of the d

To see all tasks and nore detail, run gradle tasks --all

To see nore detail about a task, run gradle help --task <task>

By default, this report shows only those tasks which have been assigned to a task group. You can do this by
setting the gr oup property for the task. You can also set the descri pt i on property, to provide a description
to be included in the report.

Example 11.10. Changing the content of the task report

bui I d. gradl e

dists {
description = 'Builds the distribution'

group = 'build

Y ou can obtain more information in the task listing using the - - al | option. With this option, the task report
lists all tasks in the project, grouped by main task, and the dependencies for each task. Here is an example:

Page 62 of 448

Example 11.11. Obtaining moreinformation about tasks
Output of gradl e -q tasks --all

> gradle -q tasks --all

Al'l tasks runnable fromroot project

Default tasks: dists

Bui | d tasks
clean - Deletes the build directory (build)
api:clean - Deletes the build directory (build)
webapp: clean - Deletes the build directory (build)
dists - Builds the distribution [api:libs, webapp:!|ibs]
docs - Builds the documentation
api:libs - Builds the JAR
api:compile - Conpiles the source files
webapp: libs - Builds the JAR [api:|ibs]
webapp: conpile - Conpiles the source files

Buil d Setup tasks

init - Initializes a new Gradl e build. [incubating]
wrapper - Cenerates Gradle wapper files. [incubating]

Hel p tasks

conponents - Displays the conponents produced by root project 'projectReports'. [incu
api : components - Displays the conmponents produced by project ':api'. [incubating]
webapp: components - Displays the conponents produced by project ':webapp'. [incubatin
dependenci es - Displays all dependencies declared in root project 'projectReports'.

api : dependenci es - Displays all dependencies declared in project

Tapi .

webapp: dependenci es - Displays all dependencies declared in project ':webapp'.
dependencyl nsight - Displays the insight into a specific dependency in root project
api : dependencyl nsight - Displays the insight into a specific dependency in project
webapp: dependencyl nsi ght - Displays the insight into a specific dependency in project

hel p - Displays a hel p nessage.

api :help - Displays a hel p nessage.

webapp: hel p - Displays a hel p nmessage.

projects - Displays the sub-projects of root project 'projectReports'.
api : projects - Displays the sub-projects of project ':api'.

webapp: proj ects - Displays the sub-projects of project ':webapp'.
properties - Displays the properties of root project 'projectReports'.
api : properties - Displays the properties of project ':api'.

webapp: properties - Displays the properties of project ':webapp'.
tasks - Displays the tasks runnable fromroot project 'projectReports’
api :tasks - Displays the tasks runnable fromproject ':api'.

webapp: tasks - Displays the tasks runnable from project ':webapp'.

11.6.3. Show task usage details

(sone of the d

Running gradl e hel p --task soneTask gives you detailed information about a specific task or
multiple tasks matching the given task name in your multiproject build. Below is an example of this detailed

information:

Page 63 of 448

Example 11.12. Obtaining detailed help for tasks
Output of gradl e -q help --task libs

> gradle -q help --task libs
Detailed task information for |ibs

Pat hs
capi:libs
:webapp: |I'i bs

Type
Task (org.gradle. api. Task)

Description
Bui | ds the JAR

G oup
bui I d

This information includes the full task path, the task type, possible commandline options and the description of
the given task.

11.6.4. Listing project dependencies

Running gr adl e dependenci es givesyou alist of the dependencies of the selected project, broken down
by configuration. For each configuration, the direct and transitive dependencies of that configuration are shown
in atree. Below isan example of thisreport:

Page 64 of 448

Example 11.13. Obtaining information about dependencies
Output of gr adl e -q dependenci es api : dependenci es webapp: dependenci es

> gradl e -q dependenci es api: dependenci es webapp: dependenci es

Root proj ect

Project :api - The shared APl for the application

conpi l e
\--- org.codehaus. groovy: groovy-all:2.3.6

test Conpi |l e
\--- junit:junit:4.11
\--- org. hantrest: hancrest-core: 1.3

Proj ect :webapp - The Wb application inplenentation

conpi l e

+--- project :api

| \--- org.codehaus. groovy: groovy-all:2.3.6
\--- commons-io: comons-io: 1.2

test Conpi |l e

No dependenci es

Since a dependency report can get large, it can be useful to restrict the report to a particular configuration. This
is achieved with the optional - - conf i gur at i on parameter:
Example 11.14. Filtering dependency report by configuration

Output of gradl e -q api : dependenci es --configuration testConpile
> gradle -q api:dependencies --configuration testConpile

Project :api - The shared APl for the application

test Conpi l e
\--- junit:junit:4.11
\--- org. hantrest: hancrest-core: 1.3

11.6.5. Getting the insight into a particular dependency

Running gradl e dependencyl nsi ght gives you an insight into a particular dependency (or
dependencies) that match specified input. Below is an example of this report:

Page 65 of 448

Example 11.15. Getting theinsight into a particular dependency
Output of gr adl e -q webapp: dependencyl nsi ght --dependency groovy --configuration

> gradl e -q webapp: dependencyl nsi ght --dependency groovy --configuration conpile
or g. codehaus. groovy: groovy-all:2.3.6
\--- project :api

\--- conpile

This task is extremely useful for investigating the dependency resolution, finding out where certain
dependencies are coming from and why certain versions are selected. For more information please see the
Dependencyl nsi ght Repor t Task classin the APl documentation.

The built-in dependencylnsight task is a part of the 'Help' tasks group. The task needs to configured with the
dependency and the configuration. The report looks for the dependencies that match the specified dependency
spec in the specified configuration. If Java related plugin is applied, the dependencylnsight task is
pre-configured with ‘compile’ configuration because typically it's the compile dependencies we are interested in.
Y ou should specify the dependency you are interested in via the command line '--dependency’ option. If you
don't like the defaults you may select the configuration via'--configuration' option. For more information see the
Dependencyl nsi ght Repor t Task classin the APl documentation.

11.6.6. Listing project properties

Running gr adl e properties givesyou alist of the properties of the selected project. This is a snippet
from the output:

Example 11.16. Information about properties
Output of gradl e -q api : properties
> gradle -q api:properties

Project :api - The shared APl for the application

all projects: [project ':api']

ant: org.gradl e.api.internal.project. DefaultAntBuil der @2345

ant Bui | der Factory: org.gradle.api.internal.project. Default AntBui |l der Fact ory@=2345
artifacts: org.gradle.api.internal.artifacts.dsl.DefaultArtifactHandl er_Decorated@?23
asDynam cObj ect: org.gradl e. api.internal.Extensi bl eDynam cObj ect @2345

baseCl assLoader Scope: org.gradle.api.internal.initialization.DefaultC assLoader Scope@
bui I dDi r: /hone/user/gradl e/ sanpl es/ usergui de/tutorial /project Reports/api/build

bui | dFi | e: /hone/ user/ gradl e/ sanpl es/ usergui de/ tutorial/projectReports/api/build.grad

11.6.7. Profiling a build

The- - pr of i | e command line option will record some useful timing information while your build is running
and write a report to the bui | d/ report s/ profil e directory. The report will be named using the time
when the build was run.

This report lists summary times and details for both the configuration phase and task execution. The times for
configuration and task execution are sorted with the most expensive operations first. The task execution results

Page 66 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.diagnostics.DependencyInsightReportTask.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.diagnostics.DependencyInsightReportTask.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.diagnostics.DependencyInsightReportTask.html

aso indicate if any tasks were skipped (and the reason) or if tasks that were not skipped did no work.

Builds which utilize a buildSrc directory will generate a second profile report for buildSrc in the bui | dSr ¢/ bui |
directory.

Profiled with tasks: -xtest build

Summary Configuration Task E
Total Build Time 2:01.164 | |: 2.804 | | :docs
Startup 0.313| |:docs 0.576 :docs:userguideSingleHtm
Settings and BuildSrc 4078 | |:core 0.203 :docs:userguidePdf
Loading Projects 0074 | |:announce 0.084 :docs:checkstyleApi
Configuring Projects 3208 | i 0.036 :docs:userguideStyleSheet
Total Task Execution 1:52.671 | | :openApi 0.035 :docs:groovydoc
:maven 0.033 :docs:samples
:codeQuality 0.033 :docs:javadoc
wrapper 0022 :docs:userguideFragmentS
eclipse 0.021 :docs:distDocs
:idea 0.021 :docs:samplesDocs
:plugins 0.020 :docs:userguideXhtml
:launcher 0.020 :docs:userguideHuml
:antlr 0.017 :docs:userguideDocbook
0sgil 0014 :docs:remoteUserguideDo
jetty 0014 :docs:samplesDochook
:scala 0012 :docs:docs
:docs:userguide
‘core
:core:compileTestGroovy
:core:codenarcTest
:core:checkstyleMain

MN”‘W%MN

11.7. Dry Run

Sometimes you are interested in which tasks are executed in which order for agiven set of tasks specified on the
command line, but you don't want the tasks to be executed. Y ou can use the - moption for this. For example, if
yourun“gradl e -m cl ean conpil e”, you'll seeall the tasks that would be executed as part of the cl ean
and conpi | e tasks. Thisis complementary to thet asks task, which shows you the tasks which are available
for execution.

11.8. Summary

In this chapter, you have seen some of the things you can do with Gradle from the command-line. Y ou can find
out more about the gr adle command in Appendix D, Gradle Command Line.

Page 67 of 448

12

Using the Gradle Graphical User Interface

In addition to supporting a traditional command line interface, Gradle offers a graphical user interface. Thisisa
stand alone user interface that can be launched with the --gui option.

Example 12.1. Launching the GUI

gradl e --gui

Note that this command blocks until the Gradle GUI is closed. Under *nix it is probably preferable to run this as
abackground task (gradle --gui&)

If you run this from your Gradle project working directory, you should see atree of tasks.

Page 68 of 448

Figure12.1. GUI Task Tree

E Gradle

Task Tree | Favorites || Command Line || Semp|

[Refresh] [Execute | [Filter] [+] Show Description

[=E-multiproject S
+-api i
--services

=}-shared

~-huild Builds and tests this project

----- uilds and tests this project and all projects that depend on it

--huildieeded Builds and tests this project and all projects it depends on

~cean Deletes the build directory.

~-compile Compiles the main Java source,

--compileTest Compiles the test Java source, [%

-dists Builds all Jar, War, Zip, and Tar archives

-erlipse Generates an Edipse .project and . dasspath file.

-grlipseClean Deletes the Eclipse .project and . dasspath files,

-erlipseCp Generates an Edlipse .dasspath file,

-grlipseProject Generates an Edlipse .project file.

--eripseWtpModule Generates the Edlipse Wip files,

Execute 'shared:builldDependents' X

Completed successfully at 3:17:05 PM

(>

:Zervices:webservice:processEescurces
:Zervices:webservice:jer SEIEPEED
apisuploadDefeultInternal
Zervices::webservice::war
Zervices:webservice:liks
Zervices:webservice:dists
gervices:webservice:compileTest B
Zervices:webservice:processTestRescocurces
:Zervices::webservice:test

< | *

[%

It is preferable to run this command from your Gradle project directory so that the settings of the Ul will be
stored in your project directory. However, you can run it then change the working directory via the Setup tab in
the Ul.

The Ul displays 4 tabs al ong the top and an output window along the bottom.

12.1. Task Tree

The Task Tree shows a hierarchical display of all projects and their tasks. Double clicking atask executesit.

There is also a filter so that uncommon tasks can be hidden. You can toggle the filter via the Filter button.
Editing the filter allows you to configure which tasks and projects are shown. Hidden tasks show up in red.
Note: newly created tasks will show up by default (versus being hidden by default).

The Task Tree context menu provides the following options:

Page 69 of 448

® Execute ignoring dependencies. This does not require dependent projects to be rebuilt (same as the -a
option).

® Add tasksto the favorites (see Favorites tab)

¢ Hidethe selected tasks. This adds them to thefilter.

* Edit the build.gradle file. Note: this requires Java 1.6 or higher and requires that you have .gradle files
associated in your OS.

12.2. Favorites

The Favorites tab is a good place to store commonly-executed commands. These can be complex commands
(anything that's legal to Gradle) and you can provide them with a display name. Thisis useful for creating, say,
a custom build command that explicitly skips tests, documentation, and samples that you could call “fast build”.

Y ou can reorder favorites to your liking and even export them to disk so they can imported by others. If you edit
them, you are given options to “Always Show Live Output”. This only appliesif you have “Only Show Output
When Errors Occur”. This override always forces the output to be shown.

12.3. Command Line

The Command Line tab is where you can execute a single Gradle command directly. Just enter whatever you
would normally enter after 'gradle’ on the command line. This also provides a place to try out commands before
adding them to favorites.

12.4. Setup

The Setup tab alows configuration of some general settings.

Page 70 of 448

Figure 12.2. GUI Setup

E Gradle

| Task Tree | Favorites | Command Line | Setup |

Current Directory
|C:\deuelnment\samples\,jaua‘l.|11u|tipmject | [Browse. ..

Log Level
| Debug w

Stack Trace Qutput
() Exceptions Only
() Standard Stack Trace
() Full Stack Trace

] only Show Output When Errors Ocour

[] Use Custom Gradle Executor

Execute 'shared:builldDependents' X

Completed successfully at 3:23:29 PM

Zervices:webservice:test

(>

gervices:webservice:build
:shared:buildDlependents

BUILD SUCCESSFUL

Total time: ©.453 secs

<

Completed Successfully
£ >

® Current Directory
Defines the root directory of your Gradle project (typically where build.gradle is located).

® Stack Trace Output
This determines how much information to write out in stack traces when errors occur. Note: if you specify a
stack trace level on either the Command Line or Favorites tab, it will override this stack trace level.

® Only Show Output When Errors Occur
Enabling this option hides any output when atask is executed unless the build fails.

® Use Custom Gradle Executor - Advanced feature
This provides you with an alternate way to launch Gradle commands. Thisis useful if your project requires
some extra setup that is done inside another batch file or shell script (such as specifying an init script).

Page 71 of 448

13

Writing Build Scripts
This chapter looks at some of the details of writing a build script.

13.1. The Gradle build language

Gradle provides a domain specific language, or DSL, for describing builds. This build language is based on
Groovy, with some additions to make it easier to describe a build.

A build script can contain any Groovy language element. [5] Gradle assumes that each build scri pt is encoded
using UTF-8.

13.2. The Project API

In the tutorial in Chapter 7, Java Quickstart we used, for example, the appl y() method. Where does this
method come from? We said earlier that the build script defines a project in Gradle. For each project in the
build, Gradle creates an object of type Pr oj ect and associates this Pr oj ect object with the build script. As
the build script executes, it configures this Pr oj ect object:

® Any method you call in your build script which is not defined
in the build script, is delegated to the Pr oj ect object.

® Any property you access in your build script, which is not
defined in the build script, is delegated to the Pr oj ect object.

Getting help writing
build scripts

Don't forget that your build script
Let's try this out and try to access the name property of the issimply Groovy code that drives
Proj ect object. the Gradle API. And the

Proj ect interface is your
Example 13.1. Accessing property of the Project object starting point for accessing
bui I d. gradl e everything in the Gradle API. So,
if you're wondering what ‘'tags
are available in your build script,
you can start with the

println name

println project.name

Output of gradl e -q check documentation for the Pr oj ect
interface.
> gradle -q check
pr oj ect Api
pr oj ect Api

Page 72 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html

Both pri nt | n statements print out the same property. The first uses auto-delegation to the Pr oj ect object,
for properties not defined in the build script. The other statement uses the pr oj ect property available to any
build script, which returns the associated Pr oj ect object. Only if you define a property or a method which has
the same name as a member of the Pr oj ect object, would you need to use the pr oj ect property.

13.2.1. Standard project properties

The Pr oj ect object provides some standard properties, which are available in your build script. The following
table lists afew of the commonly used ones.

Table 13.1. Project Properties

Name Type Default Value

pr oj ect Proj ect The Pr oj ect instance

name String The name of the project directory.

pat h String The absolute path of the project.
description String A description for the project.
projectDir File The directory containing the build script.
bui I dDi r File projectDir/build

group hj ect unspecified

version hj ect unspecified

ant Ant Bui | der ~ An Ant Bui | der instance

13.3. The Script API

When Gradle executes a script, it compiles the script into a class which implements Scr i pt . This means that
all of the properties and methods declared by the Scr i pt interface are available in your script.

13.4. Declaring variables

There are two kinds of variables that can be declared in a build script: local variables and extra properties.

13.4.1. Local variables

Local variables are declared with the def keyword. They are only visible in the scope where they have been
declared. Local variables are afeature of the underlying Groovy language.

Page 73 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/AntBuilder.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Script.html

Example 13.2. Using local variables
buil d. gradl e

def dest = "dest"

task copy(type: Copy) {

from "source"
into dest

13.4.2. Extra properties

All enhanced objects in Gradle's domain model can hold extra user-defined properties. This includes, but is not
limited to, projects, tasks, and source sets. Extra properties can be added, read and set via the owning object's ext
property. Alternatively, an ext block can be used to add multiple properties at once.

Example 13.3. Using extra properties

bui I d. gradl e
apply plugin: "java"

ext {
springVersion = "3.1. 0. RELEASE"
emai | Notification = "buil d@master.org"

}

sourceSets. all { ext.purpose = null }

sourceSets {
mai n {
pur pose = "production®
}
test {
pur pose
}
plugin {
pur pose “production"

}

}

task printProperties << {
println springVersion
println enmail Notification
sourceSets. matching { it.purpose == "production” }.each { println it.name }

Output of gradl e -q printProperties

> gradle -qg printProperties
3. 1. 0. RELEASE

bui | d@master. org

mai n

pl ugi n

Page 74 of 448

In this example, an ext block adds two extra properties to the pr oj ect object. Additionally, a property
named pur pose is added to each source set by setting ext . pur pose to nul | (null is a permissible
value). Once the properties have been added, they can be read and set like predefined properties.

By requiring specia syntax for adding a property, Gradle can fail fast when an attempt is made to set a
(predefined or extra) property but the property is misspelled or does not exist. Extra properties can be accessed
from anywhere their owning object can be accessed, giving them a wider scope than local variables. Extra
properties on a project are visible from its subprojects.

For further details on extra properties and their API, seethe Ext r aPr oper t i esExt ensi on classinthe API
documentation.

13.5. Some Groovy basics

Groovy provides plenty of features for creating DSLs, and the Gradle build language takes advantage of these.
Understanding how the build language works will help you when you write your build script, and in particular,
when you start to write custom plugins and tasks.

13.5.1. Groovy JDK

Groovy adds lots of useful methods to the standard Java classes. For example, | t er abl e gets an each
method, which iterates over the elements of the | t er abl e:

Example 13.4. Groovy JDK methods

bui I d. gradl e

/1 lterable gets an each() nethod

configurations.runtime.each { File f -> println f }

Have alook at http://groovy.codehaus.org/groovy-jdk/ for more details.

13.5.2. Property accessors

Groovy automatically converts a property reference into a call to the appropriate getter or setter method.

Example 13.5. Property accessors
buil d. gradl e

/1l Using a getter method
println project. buildDir
println getProject().getBuildDir()

/1l Using a setter method
project.buildDir = 'target’
getProject().setBuildDir('target')

13.5.3. Optional parentheses on method calls

Parentheses are optional for method calls.

Page 75 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.ExtraPropertiesExtension.html
http://groovy.codehaus.org/groovy-jdk/

Example 13.6. Method call without parentheses

bui I d. gradl e

test.systenProperty 'sone.prop', 'value

test.systenProperty(' sone.prop', 'value')

13.5.4. List and map literals

Groovy provides some shortcuts for defining Li st and Map instances. Both kinds of literals are
straightforward, but map literals have some interesting twists.

For instance, the “appl y” method (where you typicaly apply plugins) actually takes a map parameter.
However, when you have a line like “appl y pl ugi n:'java'”, you aren't actually using a map literal,
you're actually using “named parameters’, which have almost exactly the same syntax as a map literal (without
the wrapping brackets). That named parameter list gets converted to a map when the method is called, but it
doesn't start out as amap.

Example 13.7. List and map literals
buil d. gradl e

/1 List litera
test.includes = ['org/gradle/api/**', "org/gradle/internal/**"]

List<String> list = new ArrayList<String>()
list.add(' org/gradle/api/**")

list.add(' org/gradle/internal/**")
test.includes = |ist

/1 NMap literal.
Map<String, String> map = [keyl:'valuel', key2: 'value2']

/1l Groovy will coerce named argunents
/1l into a single map ar gunment

apply plugin: 'java'

13.5.5. Closures as the last parameter in a method

The Gradle DSL uses closures in many places. You can find out more about closures here. When the last
parameter of amethod is a closure, you can place the closure after the method call:

Example 13.8. Closur e as method parameter

buil d. gradl e

repositories {
println "in a closure"

}

repositories() { println "in a closure" }
repositories({ println "in a closure" })

Page 76 of 448

http://groovy.codehaus.org/Closures

13.5.6. Closure delegate

Each closure has adel egat e object, which Groovy uses to look up variable and method references which are
not local variables or parameters of the closure. Gradle uses thisfor configuration closures, wherethe del egat e
object is set to the object to be configured.

Example 13.9. Closur e delegates
buil d. gradl e

dependenci es {
assert del egate == proj ect.dependenci es
testConpile('junit:junit:4.11")

del egate.testConpile('junit:junit:4. 11")

[5] Any language element except for statement labels.

Page 77 of 448

14

Tutorial - 'Thisand That'

14.1. Directory creation

There is a common situation where multiple tasks depend on the existence of a directory. Of course you can
deal with this by adding a mkdi r to the beginning of those tasks, but it's aimost always a bad idea to repeat a
sequence of code that you only need once (Look up the DRY principle). A better solution would use the

dependsOn relationship between tasks to reuse the task to create the directory:

Example 14.1. Directory creation with mkdir
buil d. gradl e

def classesDir = new File(' build/classes")

task resources << {
cl assesDir. nkdi rs()
/'l do sonet hi ng

}

task conpil e(dependsOn: 'resources') << {
if (classesDir.isDirectory()) {
println 'The class directory exists. | can operate

}

/1 do sonet hi ng

Output of gradl e -q conpil e

> gradle -q conpile
The class directory exists. | can operate

14.2. Gradle properties and system properties

Gradle offers a variety of ways to add properties to your build. With the - D command line option you can pass a
system property to the VM which runs Gradle. The - D option of the gradle command has the same effect as

the - D option of the java command.

Y ou can also add propertiesto your project objects using propertiesfiles. You can placeagr adl e. properti es
file in the Gradle user home directory (defined by the * GRADLE_USER_HOVE” environment variable, which if
not set defaultsto USER_HQOVE/ . gr adl e) or in your project directory. For multi-project builds you can place
gradl e. properti es filesin any subproject directory. The properties set inagr adl e. properti es file
can be accessed via the project object. The properties file in the user's home directory has precedence over

property filesin the project directories.

Page 78 of 448

Y ou can aso add properties directly to your project object viathe - P command line option.

Gradle can also set project properties when it sees specially-named system properties or environment variables.
This feature is very useful when you don't have admin rights to a continuous integration server and you need to
set property values that should not be easily visible, typically for security reasons. In that situation, you can't use
the - P option, and you can't change the system-level configuration files. The correct strategy is to change the
configuration of your continuous integration build job, adding an environment variable setting that matches an
expected pattern. Thiswon't be visible to normal users on the system. (8]

If the environment variable name looks like ORG_GRADLE_PRQIECT_pr op=soneval ue, then Gradle will
set apr op property on your project object, with the value of soneval ue. Gradle also supports this for system
properties, but with a different naming pattern, which looks like or g. gr adl e. pr oj ect. prop.

Y ou can also set system propertiesin the gr adl e. pr operti es file. If aproperty namein such afile hasthe
prefix “syst enPr op. 7, like “syst enPr op. pr opNane”, then the property and its value will be set as a
system property, without the prefix. In a multi project build, “syst enPr op. ” properties set in any project
except the root will be ignored. That is, only the root project's gr adl e. pr operti es file will be checked for
properties that begin with the“syst enPr op. " prefix.

Example 14.2. Setting propertieswith a gradle.propertiesfile

gradl e. properties

gr adl eProperti esProp=gradl ePropertiesVal ue
sysProp=shoul dBeOver Wi tt enBySysProp

envProj ect Prop=shoul dBeOver Wi tt enByEnvPr op
syst enPr op. syst enrsyst enVal ue

buil d. gradle

task printProps << {
println conmandLi nePr oj ect Prop
println gradl ePropertiesProp
println systenProjectProp

println envProject Prop
println System properties['systen]

Output of gr adl e -q - PcormmandLi nePr oj ect Pr op=comuandLi nePr oj ect PropVal ue - Dorg. gr

> gradl e -q -PconmandLi nePr oj ect Prop=comandLi nePr oj ect PropVal ue - Dorg. gradl e. proj ect
conmandLi nePr oj ect PropVal ue

gr adl ePropertiesVal ue

syst enPr opertyVal ue

envPropertyVal ue

syst enVal ue

Page 79 of 448

14.2.1. Checking for project properties

Y ou can access a project property in your build script simply by using its name as you would use a variable. If
this property does not exist, an exception will be thrown and the build will fail. If your build script relies on
optional properties the user might set, perhaps in a gr adl e. properti es file, you need to check for
existence before you access them. Y ou can do this by using the method hasPr opert y(' propert yNane')
whichreturnst rue or f al se.

14.3. Configuring the project using an external
build script

You can configure the current project using an external build script. All of the Gradle build language is
available in the external script. You can even apply other scripts from the external script.

Example 14.3. Configuring the project using an external build script

bui I d. gradl e

apply from 'other.gradle'

ot her.gradl e

println “configuring $project"”
task hello << {

println "hello from ot her script'

}

Output of gradl e -q hello

> gradle -q hello
configuring root project 'configureProjectUsingScript'
hell o from ot her script

14.4. Configuring arbitrary objects

Y ou can configure arbitrary objects in the following very readable way.

Page 80 of 448

Example 14.4. Configuring arbitrary objects
buil d. gradl e

task configure << {
def pos = configure(new java.text.FieldPosition(10)) {
begi nl ndex = 1
endl ndex = 5

}

println pos. begi nl ndex
println pos. endl ndex

Output of gradl e -q configure
> gradle -q configure

1
5

14.5. Configuring arbitrary objects using an
external script

Y ou can a'so configure arbitrary objects using an external script.

Example 14.5. Configuring arbitrary objectsusing a script

buil d. gradl e

task configure << {
def pos = new java.text.Fiel dPosition(10)
/'l Apply the script

apply from 'other.gradle', to: pos
println pos. begi nl ndex
println pos. endl ndex

ot her.gradl e

/|l Set properties.

begi nl ndex = 1
endl ndex = 5

Output of gradl e -q configure
> gradle -q configure

1
5

Page 81 of 448

14.6. Caching

To improve responsiveness Gradle caches all compiled scripts by default. This includes all build scripts,
initialization scripts, and other scripts. The first time you run a build for a project, Gradle creates a . gr adl e
directory in which it puts the compiled script. The next time you run this build, Gradle uses the compiled script,
if the script has not changed since it was compiled. Otherwise the script gets compiled and the new version is
stored in the cache. If you run Gradle with the - -reconpi |l e-scri pts option, the cached script is
discarded and the script is compiled and stored in the cache. Thisway you can force Gradle to rebuild the cache.

[6] Jenkins, Teamcity, or Bamboo are some Cl servers which offer this functionality.

Page 82 of 448

15

More about Tasks

In the introductory tutorial (Chapter 6, Build Script Basics) you learned how to create simple tasks. You also
learned how to add additional behavior to these tasks later on, and you learned how to create dependencies
between tasks. This was all about simple tasks, but Gradle takes the concept of tasks further. Gradle supports
enhanced tasks, which are tasks that have their own properties and methods. Thisis realy different from what
you are used to with Ant targets. Such enhanced tasks are either provided by you or built into Gradle.

15.1. Defining tasks

We have aready seen how to define tasks using a keyword style in Chapter 6, Build Script Basics. There are a
few variations on this style, which you may need to use in certain situations. For example, the keyword style
does not work in expressions.

Example 15.1. Defining tasks

buil d. gradl e

task(hell o) << {
println "hello"

}

task(copy, type: Copy) {
fromfile(' srchDir'))
i nto(buil dDir)

Y ou can a'so use strings for the task names:

Example 15.2. Defining tasks - using strings for task names
buil d. gradl e

task(' hello') <<

{

println "hello"

}

task(' copy', type: Copy) {
from(file('srchDir'))
i nto(buildDir)

Page 83 of 448

Thereis an aternative syntax for defining tasks, which you may prefer to use:

Example 15.3. Defining tasks with alter native syntax
buil d. gradl e

tasks. create(nane: 'hello") << {
println "hello"

}

tasks. create(nane: 'copy', type: Copy) {
from(file(srcDir'))
into(buildbir)

Here we add tasksto thet asks collection. Have alook at TaskCont ai ner for more variations of thecr eat e(’
method.

15.2. Locating tasks

Y ou often need to locate the tasks that you have defined in the build file, for example, to configure them or use
them for dependencies. There are a number of ways of doing this. Firstly, each task is available as a property of
the project, using the task name as the property name:

Example 15.4. Accessing tasks as properties

buil d. gradl e

task hello

println hello.nane
println project. hello.nane

Tasks are also available through the t asks collection.

Example 15.5. Accessing tasks via tasks collection
buil d. gradl e

task hello

println tasks. hel |l o. name
println tasks['hello'].name

Y ou can access tasks from any project using the task's path using the t asks. get ByPat h() method. You can
call theget ByPat h() method with atask name, or arelative path, or an absolute path.

Page 84 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/tasks/TaskContainer.html

Example 15.6. Accessing tasks by path
buil d. gradl e
project(':projectA) {

task hello

}

task hello

println tasks.getByPath(' hello').path

println tasks.getByPath(':hello').path

println tasks. getByPath(' projectA hello").path
println tasks.getByPath(':projectA hello').path

Output of gradl e -q hello

> gradle -q hello
chello

chello

:projectA hello
:projectA hello

Have alook at TaskCont ai ner for more options for locating tasks.

15.3. Configuring tasks

As an example, let's look at the Copy task provided by Gradle. To create a Copy task for your build, you can
declarein your build script:

Example 15.7. Creating a copy task

buil d. gradl e

task nyCopy(type: Copy)

This creates a copy task with no default behavior. The task can be configured using its API (see Copy). The
following examples show several different ways to achieve the same configuration.

Just to be clear, realize that the name of thistask is“myCopy”, but it is of type “Copy”. You can have multiple
tasks of the same type, but with different names. You'll find this gives you a lot of power to implement
cross-cutting concerns across all tasks of a particular type.

Example 15.8. Configuring a task - various ways

bui I d. gradl e

Copy nyCopy = task(nyCopy, type: Copy)
myCopy. from ' resour ces’

myCopy.into 'target’
myCopy.include(' **/*. txt', "**/*. xm"', "**/* properties')

Thisis similar to the way we would configure objects in Java. Y ou have to repeat the context (my Copy) in the

Page 85 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/tasks/TaskContainer.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Copy.html

configuration statement every time. Thisis aredundancy and not very nice to read.

There is another way of configuring a task. It also preserves the context and it is arguably the most readable. It
isusually our favorite.

Example 15.9. Configuring a task - with closure

bui I d. gradl e

task nmyCopy(type: Copy)

nmy Copy {
from ' resources'
into 'target’
include('**/*. txt', "**/*.xml', '"**/* properties')

Thisworks for any task. Line 3 of the example isjust a shortcut for the t asks. get ByNane() method. It is
important to note that if you pass a closure to the get ByName() method, this closure is applied to configure
the task, not when the task executes.

Y ou can a'so use a configuration closure when you define a task.

Example 15.10. Defining a task with closure

bui I d. gradl e

task copy(type: Copy) {
from'resources'

into 'target’
include('**/*.txt', "**/*.xnl"', '"**/* properties')

Don't forget about the

15.4. Adding dependenciestoa i phases

task

A task has both configuration and

There are several ways you can define the dependencies of a task. actions. When using the <<, you
In Section 6.5, “Task dependencies’ you were introduced to are simply using a shortcut to
defining dependencies using task names. Task names can refer to define an action. Code defined in
tasks in the same project as the task, or to tasks in other projects. the configuration section of your
To refer to a task in another project, you prefix the name of the task will get executed during the
task with the path of the project it belongs to. The following is an configuration phase of the build

examplewhlch adds a dependency from pr oj ect A: t askXto pr oj ect Begasdless of what task was
targeted. See Chapter 56, The

Build Lifecycle for more details
about the build lifecycle.

Page 86 of 448

Example 15.11. Adding dependency on task from another project
buil d. gradl e

project (' projectA) {
task taskX(dependsOn: ':projectB:taskY') << {
println 'taskX

}

}

project (' projectB) {
task taskY << {
println 'taskY

}

Output of gradl e -q taskX

> gradle -q taskX
taskY
taskX

Instead of using atask name, you can define a dependency using a Task object, as shown in this example:

Example 15.12. Adding dependency using task object
buil d. gradl e

task taskX << {
println 'taskX

}

task taskY << {
println 'taskY

}

t askX. dependsOn t askY

Output of gradl e -q taskX

> gradle -q taskX
taskyY
taskX

For more advanced uses, you can define a task dependency using a closure. When evaluated, the closure is
passed the task whose dependencies are being calculated. The closure should return asingle Task or collection
of Task objects, which are then treated as dependencies of the task. The following example adds a dependency
fromt askX to all the tasksin the project whose name startswith | i b:

Page 87 of 448

Example 15.13. Adding dependency using closure
buil d. gradl e

task taskX << {
println 'taskX

}

t askX. dependsOn {
tasks.findAll { task -> task.nane.startsWth('lib") }

}

task libl << {
println "libl
}

task lib2 << {
println 'lib2
}

task notALib << {
println 'not ALi b’

}

Output of gradl e -q taskX

> gradle -q taskX
libl

lib2

taskX

For more information about task dependencies, seethe Task API.

15.5. Ordering tasks

Task ordering is an incubating feature. Please be aware that this feature may change in later Gradle
versions.

In some cases it is useful to control the order in which 2 tasks will execute, without introducing an explicit
dependency between those tasks. The primary difference between atask ordering and atask dependency is that
an ordering rule does not influence which tasks will be executed, only the order in which they will be executed.

Task ordering can be useful in a number of scenarios:

* Enforce sequentia ordering of tasks: eg. 'build' never runs before ‘clean'.

* Run build validations early in the build: eg. validate | have the correct credentials before starting the work
for arelease build.

* Get feedback faster by running quick verification tasks before long verification tasks: eg. unit tests should
run before integration tests.

* A task that aggregates the results of all tasks of a particular type: eg. test report task combines the outputs of
all executed test tasks.

Page 88 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Task.html

There are two ordering rules available: “ must run after” and “ should run after”.

When you use the “must run after” ordering rule you specify that t askB must always run after t askA,
whenever both t askA and t askB will be run. Thisis expressed ast askB. nust RunAft er (t askA) . The
“should run after” ordering rule is similar but less strict as it will be ignored in two situations. Firstly if using
that rule introduces an ordering cycle. Secondly when using parallel execution and all dependencies of a task
have been satisfied apart from the “should run after” task, then this task will be run regardless of whether its
“should run after” dependencies have been run or not. Y ou should use “should run after” where the ordering is
helpful but not strictly required.

With these rules present it is still possible to executet ask A without t askB and vice-versa.

Example 15.14. Adding a 'must run after' task ordering
buil d. gradl e

task taskX << {
println 'taskX

}
task taskY << {

println 'taskyY

}
t askY. must RunAfter taskX

Output of gradl e -q taskY taskX

> gradle -qg taskY taskX
taskX
taskY

Example 15.15. Adding a 'should run after' task ordering
buil d. gradl e

task taskX << {
println 'taskX

}
task taskY << {

println 'taskyY

}
t askY. shoul dRunAfter taskX

Output of gradl e -q taskY taskX

> gradle -q taskY taskX
taskX
taskY

In the examples above, it is still possible to execute t askY without causingt ask X to run:

Page 89 of 448

Example 15.16. Task ordering does not imply task execution
Output of gradl e -q taskY

> gradle -q taskY
taskY

To specify a “must run after” or “should run after” ordering between 2 tasks, you use the
Task. must RunAfter () and Task.shoul dRunAfter () methods. These methods accept a task
instance, atask name or any other input accepted by Task. dependsOn() .

Note that “B. nust RunAfter(A)” or “B. shoul dRunAfter(A)” does not imply any execution
dependency between the tasks:

® |tispossibleto execute tasks A and B independently. The ordering rule only has an effect when both tasks
are scheduled for execution.
* Whenrunwith - - conti nue, itispossible for B to execute in the event that Afails.

Asmentioned before, the “should run after” ordering rule will beignored if it introduces an ordering cycle:

Example 15.17. A 'should run after' task orderingisignored if it introduces an ordering cycle
buil d. gradl e

task taskX << {
println 'taskX

}
task taskY << {

println 'taskY

}
task taskz << {

println 'taskZ

}
t askX. dependsOn t askY

taskY. dependsOn t askZz
t askZ. shoul dRunAfter taskX

Output of gradl e -q taskX
> gradle -q taskX
taskz

t askY
t askX

15.6. Adding a description to atask

Y ou can add a description to your task. This description is displayed when executing gr adl e t asks.

Page 90 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Task.html#org.gradle.api.Task:mustRunAfter(java.lang.Object[])
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Task.html#org.gradle.api.Task:mustRunAfter(java.lang.Object[])
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/Task.html#shouldRunAfter(java.lang.Object[])
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])

Example 15.18. Adding a description to a task

bui I d. gradl e

task copy(type: Copy) {
description 'Copies the resource directory to the target directory.'

from'resources'

into 'target’
include('**/*. txt', "**/*.xml', '"**/* properties')

15.7. Replacing tasks

Sometimes you want to replace a task. For example, if you want to exchange a task added by the Java plugin
with a custom task of a different type. Y ou can achieve this with:

Example 15.19. Overwriting a task
buil d. gradl e

task copy(type: Copy)

task copy(overwite: true) << {
println('l amthe new one.")

}

Output of gradl e -qg copy

> gradle -q copy
| amthe new one.

This will replace atask of type Copy with the task you've defined, because it uses the same name. When you
define the new task, you have to set the over wr i t e property to true. Otherwise Gradle throws an exception,
saying that a task with that name already exists.

15.8. Skipping tasks

Gradle offers multiple ways to skip the execution of atask.

15.8.1. Using a predicate

You can use the onl yI f () method to attach a predicate to a task. The task's actions are only executed if the
predicate evaluates to true. You implement the predicate as a closure. The closure is passed the task as a
parameter, and should return true if the task should execute and false if the task should be skipped. The
predicate is evaluated just before the task is due to be executed.

Page 91 of 448

Example 15.20. Skipping atask using a predicate

bui I d. gradl e

task hello << {
println 'hello world

}

hell o.onlylf { !project.hasProperty('skipHello") }

Output of gr adl e hel | o - Pski pHel | o

> gradl e hello -PskipHello
:hel l o SKI PPED

BU LD SUCCESSFUL

Total tinme: 1 secs

15.8.2. Using StopExecutionException

If the logic for skipping a task can't be expressed with a predicate, you can use the
St opExecut i onExcept i on. If this exception is thrown by an action, the further execution of this action as
well as the execution of any following action of this task is skipped. The build continues with executing the next
task.

Example 15.21. Skipping tasks with StopExecutionException

buil d. gradl e

task conpile << {
println 'W are doing the conpile.'

}

conpi | e. doFirst {
/! Here you would put arbitrary conditions in real life.

/1 But this is used in an integration test so we want defi ned behavi or.
if (true) { throw new St opExecuti onException() }

}
task myTask(dependsOn: 'conpile') << {

println 'l am not affected'

}

Output of gradl e -q nyTask

> gradle -qg nyTask
| am not affected

Thisfeature is helpful if you work with tasks provided by Gradle. It allows you to add conditional execution of
the built-in actions of such atask. [7]

Page 92 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/tasks/StopExecutionException.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/tasks/StopExecutionException.html

15.8.3. Enabling and disabling tasks

Every task has an enabl ed flag which defaultsto t r ue. Setting it to f al se prevents the execution of any of
the task's actions.

Example 15.22. Enabling and disabling tasks

bui I d. gradl e

task di sabl eMe << {
println 'This should not be printed if the task is disabl ed.

}

di sabl eMe. enabl ed = fal se

Output of gr adl e di sabl eMe

> gradl e di sabl eMe
- di sabl eMe SKI PPED

BU LD SUCCESSFUL

Total tinme: 1 secs

15.9. Skipping tasks that are up-to-date

If you are using one of the tasks that come with Gradle, such as atask added by the Java plugin, you might have
noticed that Gradle will skip tasks that are up-to-date. This behaviour is also available for your tasks, not just for
built-in tasks.

15.9.1. Declaring atask's inputs and outputs

Let's have alook at an example. Here our task generates several output files from a source XML file. Let's run it
acouple of times.

Page 93 of 448

Example 15.23. A generator task

bui I d. gradl e

task transform {
ext.srcFile file(' mountains.xm")
ext.destDir new Fil e(buildDir, 'generated")
doLast {
println "Transform ng source file."
dest Di r. nmkdi rs()
def mountai ns = new Xm Parser (). parse(srcFile)

nmount ai ns. nount ai n. each { nmountain ->
def name = nountai n. nane[0] . t ext ()
def hei ght = nmountain. height[0].text()
def destFile = new File(destDir, "${nanme}.txt")
destFile.text = "$nane -> ${hei ght}\n"

Output of gr adl e transform

> gradl e transform
:transform
Transform ng source file.

Output of gr adl e transform

> gradle transform
:transform
Transform ng source file.

Notice that Gradle executes this task a second time, and does not skip the task even though nothing has changed.
Our example task was defined using an action closure. Gradle has no idea what the closure does and cannot
automatically figure out whether the task is up-to-date or not. To use Gradl€'s up-to-date checking, you need to
declare the inputs and outputs of the task.

Each task hasan i nput s and out put s property, which you use to declare the inputs and outputs of the task.
Below, we have changed our example to declare that it takes the source XML file as an input and produces
output to a destination directory. Let'srun it a couple of times.

Page 94 of 448

Example 15.24. Declaring the inputs and outputs of a task
buil d. gradl e

task transform {
ext.srcFile = file(' muntains. xnm ")
ext.destDir = new File(buildDir, 'generated')
inputs.file srcFile
outputs.dir destDir
doLast {
println "Transform ng source file."
destDir. nkdirs()

def mountains = new Xl Parser (). parse(srcFile)
nmount ai ns. nount ai n. each { nmountain ->
def name = nountai n. name[0] . t ext ()
def hei ght = nmountain. hei ght[0].text()
def destFile = new File(destDir, "${nanme}.txt")
destFile.text = "$nane -> ${hei ght}\n"

Output of gradl e transform
> gradle transform

:transform
Transform ng source file.

Output of gradl e transform

> gradl e transform
:transform UP- TO- DATE

Now, Gradle knows which files to check to determine whether the task is up-to-date or not.

Thetask'si nput s property isof type Taskl nput s. Thetask'sout put s property is of type TaskQut put s

A task with no defined outputs will never be considered up-to-date. For scenarios where the outputs of a task
are not files, or for more complex scenarios, the TaskQut put s. upToDat eWien() method allows you to
calculate programmatically if the tasks outputs should be considered up to date.

A task with only outputs defined will be considered up-to-date if those outputs are unchanged since the previous
build.

15.9.2. How does it work?

Before atask is executed for the first time, Gradle takes a snapshot of the inputs. This snapshot contains the set
of input files and a hash of the contents of each file. Gradle then executes the task. If the task completes
successfully, Gradle takes a snapshot of the outputs. This snapshot contains the set of output files and a hash of
the contents of each file. Gradle persists both snapshots for the next time the task is executed.

Each time after that, before the task is executed, Gradle takes a new snapshot of the inputs and outputs. If the
new snapshots are the same as the previous snapshots, Gradle assumes that the outputs are up to date and skips
the task. If they are not the same, Gradle executes the task. Gradle persists both snapshots for the next time the

Page 95 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/tasks/TaskInputs.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/tasks/TaskOutputs.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/tasks/TaskOutputs.html#upToDateWhen(groovy.lang.Closure)

task is executed.

Note that if atask has an output directory specified, any files added to that directory since the last time it was
executed are ignored and will NOT cause the task to be out of date. This is so unrelated tasks may share an
output directory without interfering with each other. If this is not the behaviour you want for some reason,
consider using TaskQut put s. upToDat eWhen()

15.10. Task rules

Sometimes you want to have a task whose behavior depends on a large or infinite number value range of
parameters. A very nice and expressive way to provide such tasks are task rules:

Example 15.25. Task rule

buil d. gradl e

tasks. addRul e("Pattern: ping<ID>") { String taskName ->
if (taskNane.startsWth("ping")) {
task(taskNane) << {
println "Pinging: " + (taskNane - 'ping')

Output of gradl e -q pi ngServer1l

> gradle -q pingServerl
Pi ngi ng: Serverl

The String parameter is used as a description for the rule, which is shown with gr adl e t asks.

Rules are not only used when calling tasks from the command line. Y ou can also create dependsOn relations on
rule based tasks:

Page 96 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/tasks/TaskOutputs.html#upToDateWhen(groovy.lang.Closure)

Example 15.26. Dependency on rule based tasks
buil d. gradl e

t asks. addRul e("Pattern: ping<ID>") { String taskNane ->
if (taskNane.startsWth("ping")) {
task(taskNane) << {
println “Pinging: " + (taskNane - 'ping')

task groupPing {
dependsOn pi ngServer 1, pingServer2

}

Output of gradl e -q groupPi ng
> gradle -q groupPing

Pi ngi ng: Serverl
Pi ngi ng: Server2

If yourun“gradl e -q tasks” youwon't find atask named “pi ngSer ver 1” or “pi ngSer ver 2", but
this script is executing logic based on the request to run those tasks.

15.11. Finalizer tasks

Finalizers tasks are an incubating feature (see Section C.1.2, “Incubating”).

Finalizer tasks are automatically added to the task graph when the finalized task is scheduled to run.

Example 15.27. Adding a task finalizer
buil d. gradle

task taskX << {
println 'taskX

}
task taskY << {

println 'taskY

}

taskX. finalizedBy taskY

Output of gradl e -q taskX

> gradle -q taskX
taskX
taskY

Finalizer tasks will be executed even if the finalized task fails.

Page 97 of 448

Example 15.28. Task finalizer for afailing task
buil d. gradl e

task taskX << {
println 'taskX
t hrow new Runti neExcepti on()

}
task taskY << {

println 'taskyY

}

taskX. finalizedBy taskY

Output of gradl e -q taskX

> gradle -q taskX
taskX
taskY

On the other hand, finalizer tasks are not executed if the finalized task didn't do any work, for example if it is
considered up to date or if a dependent task fails.

Finalizer tasks are useful in situations where the build creates a resource that has to be cleaned up regardless of
the build failing or succeeding. An example of such a resource is a web container that is started before an
integration test task and which should be always shut down, even if some of the tests fail.

To specify afinalizer task you use the Task. fi nal i zedBy() method. This method accepts a task instance,
atask name, or any other input accepted by Task. dependsOn() .

15.12. Summary

If you are coming from Ant, an enhanced Gradle task like Copy seems like a cross between an Ant target and an
Ant task. Although Ant's tasks and targets are really different entities, Gradle combines these notions into a
single entity. Simple Gradle tasks are like Ant's targets, but enhanced Gradle tasks also include aspects of Ant
tasks. All of Gradle's tasks share a common APl and you can create dependencies between them. These tasks
are much easier to configure than an Ant task. They make full use of the type system, and are more expressive
and easier to maintain.

[7] You might be wondering why there is neither an import for the St opExecut i onExcept i on nor do we
access it via its fully qualified name. The reason is, that Gradle adds a set of default imports to your script.
These imports are customizable (see Appendix E, Existing IDE Support and how to cope without it).

Page 98 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Task.html#org.gradle.api.Task:finalizedBy(java.lang.Object[])
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])

16

Working With Files

Most builds work with files. Gradle adds some concepts and APIsto help you achieve this.

16.1. Locating files

Y ou can locate afile relative to the project directory using the Pr oj ect . fi | e() method.

Example 16.1. L ocating files
buil d. gradl e

/1 Using a relative path
File configFile = file('src/config.xm")

/1 Using an absol ute path

configFile = file(configFile.absol utePat h)

/1 Using a File object with a relative path
configFile = file(new File('src/config.xm"))

You can pass any object tothefi | e() method, and it will attempt to convert the value to an absolute Fi | e
object. Usually, you would passit a St ri ng or Fi | e instance. If this path is an absolute path, it is used to
construct a Fi | e instance. Otherwise, aFi | e instance is constructed by prepending the project directory path
to the supplied path. Thef i | e() method also understands URLSs, suchasfi | e: / sone/ pat h. xmi .

Using this method is a useful way to convert some user provided value into an absolute Fi | e. It is preferable to
using new Fil e(sonePath), asfile() aways evaluates the supplied path relative to the project
directory, which is fixed, rather than the current working directory, which can change depending on how the
user runs Gradle.

16.2. File collections

A file collection is simply a set of files. It is represented by the Fi | eCol | ect i on interface. Many objectsin
the Gradle API implement this interface. For example, dependency configurationsimplement Fi | eCol | ecti on

One way to obtain a Fi | eCol | ecti on instance isto use the Proj ect. fil es() method. You can pass
this method any number of objects, which are then converted into a set of Fi | e objects. Thefi | es() method
accepts any type of object asits parameters. These are evaluated relative to the project directory, asper thefi | e()

Page 99 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])

method, described in Section 16.1, “Locating files”. You can also pass collections, iterables, maps and arrays to
thefil es() method. These are flattened and the contents converted to Fi | e instances.

Example 16.2. Creating afile collection

bui I d. gradl e

FileCol l ection collection = files('src/filel.txt’

new File('src/file2.txt"),
['src/file3.txt', "src/filed.txt"'])

A filecollection isiterable, and can be converted to a number of other types using the as operator. You can also
add 2 file collections together using the + operator, or subtract one file collection from another using the -
operator. Here are some examples of what you can do with afile collection.

Example 16.3. Using afile collection
buil d. gradl e

/'l lterate over the files in the collection
collection.each {File file ->
println file.name

}

/1 Convert the collection to various types
Set set = collection.files

Set set2 = collection as Set

List list = collection as List

String path = col |l ection. asPath
File file = collection.singleFile
File file2 = collection as File

/1 Add and subtract collections
def union = collection + files('src/file3.txt")
def different = collection - files('src/file3.txt")

You can aso passthefi | es() method aclosureor aCal | abl e instance. Thisis called when the contents of
the collection are queried, and its return value is converted to a set of Fi | e instances. The return value can be
an object of any of the types supported by the fi | es() method. This is a simple way to 'implement’ the
Fi | eCol | ecti on interface.

Page 100 of 448

Example 16.4. Implementing a file collection
buil d. gradl e

task list << {
File srcDr

/Il Create a file collection using a closure
collection = files { srcDir.listFiles() }

srcDir = file('src')

println "Contents of $srcDir.nane'
collection.collect { relativePath(it) }.sort().each { printlnit }

srcDir = file('src2")
println "Contents of $srcDir.nane'
collection.collect { relativePath(it) }.sort().each { println it }

Outputof gradle -q Ii st

> gradle -q list
Contents of src
src/dirl
src/filel.txt
Contents of src2
src2/dirl
src2/dir2

Some other types of thingsyou can passtofi |l es():

Fil eCol | ection
These are flattened and the contents included in the file collection.

Task
The output files of the task are included in the file collection.

TaskQut put s
The output files of the TaskOutputs are included in the file collection.

It is important to note that the content of afile collection is evaluated lazily, when it is needed. This means you
can, for example, createa Fi | eCol | ect i on that represents files which will be created in the future by, say,
some task.

16.3. Filetrees

A file tree is a collection of files arranged in a hierarchy. For example, a file tree might represent a directory
tree or the contents of a ZIP file. It is represented by the Fi | eTr ee interface. The Fi | eTr ee interface
extends Fi | eCol | ecti on, so you can treat afile tree exactly the same way as you would a file collection.
Severa objectsin Gradle implement the Fi | eTr ee interface, such as source sets.

Oneway to obtain aFi | eTr ee instanceistousethe Proj ect . fi |l eTree() method. ThiscreatesaFi | eTr et
defined with a base directory, and optionally some Ant-style include and exclude patterns.

Page 101 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.util.Map)

Example 16.5. Creating afiletree
buil d. gradl e

/Il Create a file tree with a base directory
FileTree tree = fileTree(dir: 'src/nmin')

/1l Add include and exclude patterns to the tree
tree.include '**/*. java'
tree. exclude ' **/ Abstract*'

/1l Create a tree using path
tree = fileTree('src').include('**/*.java')

/|l Create a tree using closure
tree = fileTree('src') {
include '**/* java'

eate a tree using a map

= fileTree(dir: 'src', include: '**/* java')
fileTree(dir: 'src', includes: ['**/*. java', "**/*.xnm"'])
fileTree(dir: '"src', include: '**/*. java', exclude: '**/*test*/**")

You use afile tree in the same way you use a file collection. You can also visit the contents of the tree, and
select a sub-tree using Ant-style patterns:

Example 16.6. Using afiletree
buil d. gradl e

/'l lterate over the contents of a tree
tree.each {File file ->
println file

}

/'l Filter a tree
FileTree filtered = tree. matching {
include 'org/gradl e/ api/**'

}

/1l Add trees together
FileTree sum = tree + fileTree(dir: 'src/test')

/1 Visit the elements of the tree
tree.visit {elenent ->
println "$el enent.rel ati vePath => $el enent.file"

}

16.4. Using the contents of an archive as afile tree

You can use the contents of an archive, such as a ZIP or TAR file, as afile tree. You do this using the
Proj ect. zipTree() and Proj ect.tar Tree() methods. These methods return a Fi | eTr ee instance
which you can use like any other file tree or file collection. For example, you can use it to expand the archive by
copying the contents, or to merge some archives into another.

Page 102 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:tarTree(java.lang.Object)

Example 16.7. Using an archive asafiletree
buil d. gradl e

/|l Create a ZIP file tree using path
FileTree zip = zipTree(' soneFile.zip")

/'l Create a TAR file tree using path
FileTree tar = tarTree(' soneFile.tar")

//tar tree attenpts to guess the conpression based on the file extension
/I however if you nust specify the conpression explicitly you can
Fil eTree someTar = tarTree(resources.gzip(' soneTar.ext"))

16.5. Specifying a set of input files

Many objectsin Gradle have properties which accept a set of input files. For example, the JavaConpi | e task
has asour ce property, which defines the source files to compile. You can set the value of this property using
any of the types supported by the files() method, which was shown above. This means you can set the property
using, for example, a Fi | e, Stri ng, collection, Fi | eCol | ecti on or even a closure. Here are some
examples:

Example 16.8. Specifying a set of files
buil d. gradl e

/'l Use a File object to specify the source directory
conpi l e {
source = file('src/main/java')

}

/1 Use a String path to specify the source directory
conpi l e {
source = 'src/min/java

}

/1 Use a collection to specify multiple source directories
conpi l e {
source = ['src/main/java', '../shared/java']

}

/'l Use a FileCollection (or FileTree in this case) to specify the source files

conpi l e {
sour ce fileTree(dir: 'src/main/java).matching { include 'org/gradle/api/**

}

/1l Using a closure to specify the source files
conpi l e {
source = {
/1 Use the contents of each zip file in the src dir
file('src').listFiles().findAll {it.nane.endsWth('.zip')}.collect { zipTr

Page 103 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.compile.JavaCompile.html

Usually, there is a method with the same name as the property, which appends to the set of files. Again, this
method accepts any of the types supported by the files() method.
Example 16.9. Specifying a set of files

buil d. gradl e

conpi l e {
/1 Add some source directories use String paths
source 'src/main/java', 'src/main/groovy

/1 Add a source directory using a File object

source file('../shared/java')

/1 Add some source directories using a closure
source { file('src/test/").listFiles() }

16.6. Copying files

Y ou can use the Copy task to copy files. The copy task is very flexible, and allows you to, for example, filter
the contents of the files as they are copied, and map to the file names.

To use the Copy task, you must provide a set of source files to copy, and a destination directory to copy the
filesto. Y ou may also specify how to transform the files as they are copied. You do al thisusing a copy spec. A
copy spec is represented by the Copy Spec interface. The Copy task implements thisinterface. Y ou specify the
source files using the CopySpec. from() method. To specify the destination directory, use the
CopySpec. i nt o() method.

Example 16.10. Copying files using the copy task

bui I d. gradl e

task copyTask(type: Copy) {
from' src/ mai n/ webapp

into 'buil d/ expl odedWar"'

Thef r on() method accepts any of the arguments that the files() method does. When an argument resolves to a
directory, everything under that directory (but not the directory itself) is recursively copied into the destination
directory. When an argument resolves to a file, that file is copied into the destination directory. When an
argument resolves to a non-existing file, that argument isignored. If the argument is a task, the output files (i.e.
the files the task creates) of the task are copied and the task is automatically added as a dependency of the Copy
task. Thei nt o() accepts any of the arguments that the file() method does. Here is another example:

Page 104 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/CopySpec.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/CopySpec.html#from(java.lang.Object[])
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/CopySpec.html#into(java.lang.Object)
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/CopySpec.html#into(java.lang.Object)

Example 16.11. Specifying copy task sourcefiles and destination directory

bui I d. gradl e

task anot her CopyTask(type: Copy) {
/| Copy everything under src/nain/webapp
from ' src/ mai n/ webapp'
/'l Copy a single file
from'src/staging/index. htm'
/1 Copy the output of a task
from copyTask

/1l Copy the output of a task using Task outputs explicitly.
from copyTaskWt hPatt er ns. out put s

/'l Copy the contents of a Zip file

from zi pTree(' src/ main/assets. zip')

/1 Determine the destination directory |ater

into { getDestDir() }

Y ou can select the files to copy using Ant-style include or exclude patterns, or using a closure:

Example 16.12. Selecting the files to copy
buil d. gradl e

task copyTaskWthPatterns(type: Copy) {
from ' src/ mai n/ webapp'
into 'buil d/ expl odedWar'
include '**/* htm"'
include '**/* . jsp'
exclude { details -> details.file.nane.endsWth('.html"') &&
details.file.text.contains('staging') }

You can aso use the Pr oj ect. copy() method to copy files. It works the same way as the task with some
major limitations though. First, the copy() is not incremental (see Section 15.9, “Skipping tasks that are
up-to-date”).

Example 16.13. Copying files using the copy() method without up-to-date check

bui I d. gradl e

task copyMet hod << {
copy {
from ' src/ mai n/ webapp'
into 'buil d/ expl odedWar"’

include "**/* htm'
include '**/* jsp'

Secondly, the copy () method can not honor task dependencies when atask is used as a copy source (i.e. as an
argument to f r o)) because it's a method and not a task. As such, if you are using the copy() method as
part of atask action, you must explicitly declare al inputs and outputsin order to get the correct behavior.

Page 105 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copy(groovy.lang.Closure)

Example 16.14. Copying files using the copy() method with up-to-date check

bui I d. gradl e

task copyMet hodW t hExpl i ci t Dependenci es{
/'l up-to-date check for inputs, plus add copyTask as dependency
inputs.file copyTask
outputs.dir 'sone-dir' // up-to-date check for outputs
doLast {
copy {

/1 Copy the output of copyTask
from copyTask
into 'sonme-dir'

It is preferable to use the Copy task wherever possible, asit supports incremental building and task dependency
inference without any extra effort on your part. The copy() method can be used to copy files as part of a
task's implementation. That is, the copy method is intended to be used by custom tasks (see Chapter 58, Writing
Custom Task Classes) that need to copy files as part of their function. In such a scenario, the custom task should
sufficiently declare the inputs/outputs relevant to the copy action.

16.6.1. Renaming files

Example 16.15. Renaming files asthey are copied
buil d. gradl e

task renane(type: Copy) {
from' src/ mai n/ webapp'
into 'build/ expl odedWar'
/1l Use a closure to map the file nane
renane { String fil eName ->

fileName.replace('-staging-', '")

}

/1l Use a regular expression to map the file nane
rename '(.+)-staging-(.+)"', '$1$2
renane(/ (.+)-staging-(.+)/, '$1%$2")

Page 106 of 448

16.6.2. Filtering files

Example 16.16. Filtering filesasthey are copied

bui I d. gradl e

i nport org.apache.tools.ant.filters. FixCrLfFilter
i mport org.apache.tools.ant.filters. Repl aceTokens

task filter(type: Copy) {
from ' src/ mai n/ webapp'
into 'build/ expl odedWar'
/1 Substitute property tokens in files
expand(copyright: '2009', version: '2.3.1")
expand(proj ect. properties)
/1l Use some of the filters provided by Ant
filter(FixCrLfFilter)
filter(Repl aceTokens, tokens: [copyright: '2009', version: '2.3.1'])
/1l Use a closure to filter each |ine
filter { String line ->

"[$line]"

}

A “token” in a source file that both the “expand” and “filter” operations look for, is formatted like
“ @tokenName@"” for atoken named “tokenName”.

16.6.3. Using the Copy Spec class

Copy specs form a hierarchy. A copy spec inherits its destination path, include patterns, exclude patterns, copy
actions, name mappings and filters.

Example 16.17. Nested copy specs
buil d. gradl e

task nestedSpecs(type: Copy) ({
into 'build/ expl odedWar'
excl ude ' **/*st agi ng*'
from('src/dist') {
include '**/* htm"'

}
into('libs") {
from configurations. runtime

}

Page 107 of 448

16.7. Using the Sync task

The Sync task extends the Copy task. When it executes, it copies the source files into the destination directory,
and then removes any files from the destination directory which it did not copy. This can be useful for doing
things such as installing your application, creating an exploded copy of your archives, or maintaining a copy of
the project's dependencies.

Here is an example which maintains a copy of the project's runtime dependencies in the bui | d/ I i bs
directory.

Example 16.18. Using the Sync task to copy dependencies

bui I d. gradl e

task libs(type: Sync) {
from configurations.runtine

into "$buildDir/libs"

16.8. Creating archives

A project can have as many JAR archives as you want. You can also add WAR, ZIP and TAR archives to your
project. Archives are created using the various archive tasks: Zi p, Tar, Jar , War , and Ear . They all work the
same way, so let'slook at how you create a ZIPfile.
Example 16.19. Creating a ZI P ar chive
bui I d. gradl e

apply plugin: 'java'

task zip(type: Zip) {
from'src/dist'

into('libs") {
from configurations.runtinme

}

The archive tasks all work exactly the same way as the Copy task,
and implement the same Copy Spec interface. As with the Copy
task, you specify the input files using the f r om() method, and
can optionally specify where they end up in the archive using thei nt o()

Why are you using
the Java plugin?

method. Y ou can filter the contents of file, rename files, and al the The Java plugin adds a number

other things you can do with a copy spec. of default values for the archive

tasks. You can use the archive

16.8.1. Archive naming tasks without using the Java

plugin, if you like. You will need

The format of proj ect Name- version. type is used for to provide values for some
generated archive file names. For example: additional properties.

Page 108 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Sync.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ear.Ear.html

Example 16.20. Creation of ZIP archive
buil d. gradl e
apply plugin: 'java'

version = 1.0

task nyZip(type: Zip) {

from' sonedir'

}

println myZip. archi veNane
println relativePath(nyZi p.destinationDir)
println rel ati vePat h(nyZi p. ar chi vePat h)

Output of gradl e -gq nmyZip

> gradle -q nyZip

zipProject-1.0.zip

bui |l d/ di stributions

bui I d/ di stributions/zipProject-1.0.zip

This adds a Zi p archive task with the name nyZi p which produces ZIP file zi pPr oj ect - 1. 0. zi p. Itis
important to distinguish between the name of the archive task and the name of the archive generated by the
archive task. The default name for archives can be changed with the ar chi vesBaseNane project property.
The name of the archive can aso be changed at any time later on.

There are a number of properties which you can set on an archive task. These are listed below in Table 16.1,
“Archive tasks - naming properties’. Y ou can, for example, change the name of the archive:

Example 16.21. Configuration of archivetask - custom archive name

bui I d. gradl e

apply plugin: 'java'
version = 1.0

task nmyZip(type: Zip) {
from' sonedir'
baseNane = 'cust onNane'

}

println nmyZ p. archi veName

Output of gradl e -gq nmyZip

> gradle -q nyZip
cust onName- 1. 0. zi p

Y ou can further customize the archive names:

Page 109 of 448

Example 16.22. Configuration of ar chive task - appendix & classifier
buil d. gradl e

apply plugin: 'java'
ar chi vesBaseName = 'gradl e
version = 1.0

task nyZip(type: Zip) {
appendi x = 'wrapper'
classifier = "src'
from' sonedir'

}

println myZip. archi veNanme

Output of gradl e -gq nmyZip

> gradle -q nyZip
gradl e-w apper-1.0-src.zip

Page 110 of 448

Table 16.1. Archivetasks - naming properties

Property name Type Default value Description

ar chi veNane String baseName-appendi x-ver si on-cl assi fi er. eXhebasediie
If any of these properties is empty the trailing - is name of the

not added to the name. generated
archive

ar chi vePat h File destinationDi r/ archi veNane The absolute
path of the
generated
archive.

destinationDir File Depends on the archive type. JARs and WARS go The
intoproj ect. buildDir/libraries.ZIPs directory to
and TARsgointo pr oj ect . bui | dDi r/ di st ri but gemesste the
archiveinto

baseNane String project.nanme The base
name portion
of the
archivefile
name.

appendi x String null The
appendix
portion of
the archive
file name.

version String project.version The version
portion of
the archive
file name.

classifier String null The
classifier
portion of
the archive
file name,

ext ensi on String Dependson the archive type, and for TAR files, the The
compression typeaswell: zi p,j ar,war ,tar,t gz extension of
ortbz2. the archive
file name.

16.8.2. Sharing content between multiple archives

You can usethe Pr oj ect . copySpec() method to share content between archives.

Page 111 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copySpec(groovy.lang.Closure)

Often you will want to publish an archive, so that it is usable from another project. This processis described in
Chapter 52, Publishing artifacts

Page 112 of 448

17

Using Ant from Gradle

Gradle provides excellent integration with Ant. You can use individual Ant tasks or entire Ant builds in your
Gradle builds. In fact, you will find that it's far easier and more powerful using Ant tasks in a Gradle build
script, than it isto use Ant's XML format. You could even use Gradle ssimply as a powerful Ant task scripting
tool.

Ant can be divided into two layers. The first layer isthe Ant language. It provides the syntax for the bui | d. xm
file, the handling of the targets, specia constructs like macrodefs, and so on. In other words, everything except
the Ant tasks and types. Gradle understands this language, and allows you to import your Ant bui | d. xm
directly into a Gradle project. Y ou can then use the targets of your Ant build asif they were Gradle tasks.

The second layer of Ant isitswealth of Ant tasks and types, like j avac, copy or j ar . For this layer Gradle
provides integration simply by relying on Groovy, and the fantastic Ant Bui | der .

Finally, since build scripts are Groovy scripts, you can aways execute an Ant build as an external process. Y our
build script may contain statements like:" ant cl ean conpi | e". execut e() . [8

You can use Gradle's Ant integration as a path for migrating your build from Ant to Gradle. For example, you
could start by importing your existing Ant build. Then you could move your dependency declarations from the
Ant script to your build file. Finally, you could move your tasks across to your build file, or replace them with
some of Gradle's plugins. This process can be done in parts over time, and you can have aworking Gradle build
during the entire process.

17.1. Using Ant tasks and types in your build

In your build script, a property called ant is provided by Gradle. This is a reference to an Ant Bui | der
instance. This Ant Bui | der isused to access Ant tasks, types and properties from your build script. Thereisa
very simple mapping from Ant'sbui | d. xm format to Groovy, which is explained below.

You execute an Ant task by calling a method on the Ant Bui | der instance. You use the task name as the
method name. For example, you execute the Ant echo task by calling the ant . echo() method. The
attributes of the Ant task are passed as Map parameters to the method. Below is an example of the echo task.
Notice that we can also mix Groovy code and the Ant task markup. This can be extremely powerful.

Page 113 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/AntBuilder.html

Example 17.1. Using an Ant task
buil d. gradl e

task hello << {
String greeting = 'hello from Ant'

ant . echo(nessage: greeting)

Output of gradl e hel | o
> gradle hello
“hello
[ant:echo] hello from Ant

BU LD SUCCESSFUL

Total tinme: 1 secs

Y ou pass nested text to an Ant task by passing it as a parameter of the task method call. In this example, we pass
the message for the echo task as nested text:

Example 17.2. Passing nested text to an Ant task

buil d. gradl e

task hello << {

ant. echo(' hello from Ant")

}

Output of gradl e hel | o

> gradle hello
“hello
[ant:echo] hello from Ant

BU LD SUCCESSFUL

Total tinme: 1 secs

Y ou pass nested elements to an Ant task inside a closure. Nested elements are defined in the same way as tasks,
by calling a method with the same name as the element we want to define.

Example 17.3. Passing nested elementsto an Ant task

buil d. gradl e

task zip << {
ant. zip(destfile: "archive.zip') {
fileset(dir: "src') {
i ncl ude(name: "**. xm")

excl ude(name: '**.java')

Page 114 of 448

You can access Ant types in the same way that you access tasks, using the name of the type as the method
name. The method call returns the Ant data type, which you can then use directly in your build script. In the
following example, we create an Ant pat h object, then iterate over the contents of it.

Example 17.4. Using an Ant type

buil d. gradl e

task list << {
def path = ant.path {
fileset(dir: '"libs', includes: "*.jar")

}
path.list().each {

println it

}

More information about Ant Bui | der can befound in'Groovy in Action' 8.4 or at the Groovy Wiki

17.1.1. Using custom Ant tasks in your build

To make custom tasks available in your build, you can use the t askdef (usually easier) or t ypedef Ant
task, just asyou would inabui | d. xm file. You can then refer to the custom Ant task as you would a built-in
Ant task.

Example 17.5. Using a custom Ant task
buil d. gradl e

task check << {

ant . t askdef (resource: 'checkstyl etask. properties') {

cl asspath {
fileset(dir: '"libs', includes: '"*.jar")

}

}

ant . checkstyl e(config: 'checkstyle. xm"') {
fileset(dir: '"src')

}

Y ou can use Gradl€'s dependency management to assemble the classpath to use for the custom tasks. To do this,
you need to define a custom configuration for the classpath, then add some dependencies to the configuration.
Thisis described in more detail in Section 51.4, “How to declare your dependencies’.

Example 17.6. Declaring the classpath for a custom Ant task

buil d. gradl e

configurations {
pnmd
}

dependenci es {
pnd group: 'pnd', nane: 'pnd', version: '4.2.5

}

Page 115 of 448

http://groovy.codehaus.org/Using+Ant+from+Groovy

To use the classpath configuration, use the asPat h property of the custom configuration.

Example 17.7. Using a custom Ant task and dependency management together

bui I d. gradl e

task check << {
ant . t askdef (name: ' pnd',
cl assnane: 'net.sourceforge. pnd. ant. PMDTask' ,
cl asspat h: configurations. pnd. asPat h)
ant . pnd(short Fi | enanes: 'true',
failonrul eviolation: '"true',

rul esetfiles: file(' pnd-rules.xm').toURI().toString()) {
formatter(type: 'text', toConsole: 'true')
fileset(dir: '"src')

17.2. Importing an Ant build

You can use the ant . i nport Bui | d() method to import an Ant build into your Gradle project. When you
import an Ant build, each Ant target is treated as a Gradle task. This means you can manipulate and execute the
Ant targets in exactly the same way as Gradle tasks.

Example 17.8. Importing an Ant build

bui I d. gradl e

ant.inportBuild 'build. xm'

bui | d. xmi

<proj ect >
<target name="hello0">
<echo>Hel | o, from Ant</echo>

</target >
</ pr oj ect >

Output of gradl e hel | o

> gradle hello

“hello

[ant:echo] Hello, from Ant
BU LD SUCCESSFUL

Total tinme: 1 secs

Y ou can add atask which depends on an Ant target:

Page 116 of 448

Example 17.9. Task that depends on Ant target
buil d. gradl e

ant.inportBuild 'build. xm"

task intro(dependsOn: hello) << {

println 'Hello, from G adl e’

}

Output of gradl e intro

> gradle intro

thello

[ant:echo] Hello, from Ant
iintro

Hello, from Gradle

BU LD SUCCESSFUL

Total tinme: 1 secs

Or, you can add behaviour to an Ant target:

Example 17.10. Adding behaviour to an Ant target
buil d. gradl e

ant.inportBuild 'build. xm'

hello << {
println "Hello, from G adl e’

}

Output of gradl e hel | o
> gradle hello
chello
[ant:echo] Hello, from Ant
Hello, from Gradle
BU LD SUCCESSFUL

Total tinme: 1 secs

It isaso possible for an Ant target to depend on a Gradle task:

Page 117 of 448

Example 17.11. Ant target that dependson Gradletask

bui I d. gradl e

ant.inportBuild 'build. xm"

task intro << {
println 'Hello, from G adl e’

}

bui | d. xm

<pr oj ect >
<target name="hel | 0" depends="intro">

<echo>Hel | o, from Ant </ echo>
</target>
</ pr oj ect >

Output of gradl e hel | o
> gradle hello
intro
Hello, from G adle

chello
[ant:echo] Hello, from Ant

BU LD SUCCESSFUL

Total tinme: 1 secs

Sometimes it may be necessary to “rename” the task generated for an Ant target to avoid a naming collision
with existing Gradle tasks. To do this, usethe Ant Bui | der . i nport Bui | d() method.

Example 17.12. Renaming imported Ant targets

buil d. gradl e

ant . inportBuil d(' build.xm ") { antTargetName ->

"a-' + ant Tar get Nane

}

bui | d. xmi

<proj ect >
<target name="hello0">
<echo>Hel | o, from Ant </ echo>

</target >
</ pr oj ect >

Output of gradl e a-hell o
> gradle a-hello
sa-hello
[ant:echo] Hello, from Ant
BUI LD SUCCESSFUL

Total tine: 1 secs

Page 118 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/AntBuilder.html#importBuild(java.lang.Object, org.gradle.api.Transformer)

Note that while the second argument to this method should be a Tr ansf or ner , when programming in Groovy
we can simply use a closure instead of an anonymous inner class (or similar) due to Groovy's support for
automatically coercing closures to single-abstract-method types.

17.3. Ant properties and references

There are several ways to set an Ant property, so that the property can be used by Ant tasks. You can set the
property directly on the Ant Bui | der instance. The Ant properties are also available as a Map which you can
change. You can also use the Ant pr oper t y task. Below are some examples of how to do this.

Example 17.13. Setting an Ant property

buil d. gradl e

.buildDir = buildDr
.properties.buildDir = buildDir

.properties['buildDir'] = buildDir
.property(name: 'buildDir', location: buildDir)

bui | d. xm

<echo>bui | dDi r = ${bui |l dDi r} </ echo>

Many Ant tasks set properties when they execute. There are several ways to get the value of these properties.
You can get the property directly from the Ant Bui | der instance. The Ant properties are also available as a

Map. Below are some examples.

Example 17.14. Getting an Ant property
bui I d. xm

<property nane="ant Prop" val ue="a property defined in an Ant build"/>

bui I d. gradl e

println ant.antProp
println ant.properties.antProp
println ant.properties['antProp']

There are several waysto set an Ant reference:

Example 17.15. Setting an Ant reference
buil d. gradl e

ant.path(id: 'classpath', location: 'libs")
ant . references. cl asspath = ant.path(location: 'libs")
ant.references[' classpath'] = ant.path(location: "libs")

bui | d. xni

<pat h refid="cl asspath"/>

Page 119 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/Transformer.html
http://mrhaki.blogspot.ie/2013/11/groovy-goodness-implicit-closure.html
http://mrhaki.blogspot.ie/2013/11/groovy-goodness-implicit-closure.html

There are several waysto get an Ant reference:

Example 17.16. Getting an Ant reference

bui | d. xm

<pat h id="antPath" |ocation="1ibs"/>

bui I d. gradl e

println ant.references. antPath

println ant.references['antPath']

17.4. APl

The Ant integration is provided by Ant Bui | der .

[8] In Groovy you can execute Strings. To learn more about executing external processes with Groovy have a
look in 'Groovy in Action' 9.3.2 or at the Groovy wiki

Page 120 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/AntBuilder.html

18

L ogging

Thelog isthe main 'Ul' of abuild tool. If it istoo verbose, real warnings and problems are easily hidden by this.
On the other hand you need relevant information for figuring out if things have gone wrong. Gradle defines 6
log levels, as shown in Table 18.1, “Log levels’. There are two Gradle-specific log levels, in addition to the
ones you might normally see. Those levels are QUIET and LIFECYCLE. The latter isthe default, and is used to
report build progress.

Table18.1. Log levels

Level Used for
ERROR Error messages
QUIET Important information messages

WARNING Warning messages
LIFECYCLE Progress information messages
INFO Information messages
DEBUG Debug messages

18.1. Choosing alog level

You can use the command line switches shown in Table 18.2, “Log level command-line options’ to choose
different log levels. In Table 18.3, “Stacktrace command-line options’ you find the command line switches
which affect stacktrace logging.

Table 18.2. Log level command-line options

Option OutputsLog L evels

no logging options LIFECY CLE and higher
-qor--quiet QUIET and higher

-i or--info INFO and higher

-dor--debug DEBUG and higher (that is, all log messages)

Page 121 of 448

Table 18.3. Stacktrace command-line options
Option Meaning

No stacktrace options No stacktraces are printed to the console in case of abuild error (e.g. a
compile error). Only in case of internal exceptions will stacktraces be printed.
If the DEBUG log level is chosen, truncated stacktraces are always printed.

-sor--stacktrace Truncated stacktraces are printed. We recommend this over full stacktraces.
Groovy full stacktraces are extremely verbose (Due to the underlying dynamic
invocation mechanisms. Y et they usually do not contain relevant information
for what has gone wrong in your code.)

-Sor--full-stacktrackhefull stacktraces are printed out.

18.2. Writing your own log messages

A simple option for logging in your build file is to write messages to standard output. Gradle redirects anything
written to standard output to it's logging system at the QUI ET log level.

Example 18.1. Using stdout to write log messages

bui I d. gradl e

println 'A nessage which is | ogged at QU ET | evel"

Gradle also provides a | ogger property to a build script, which is an instance of Logger . This interface
extends the SLF4J Logger interface and adds afew Gradle specific methods to it. Below is an example of how
thisis used in the build script:

Example 18.2. Writing your own log messages

buil d. gradl e

.quiet('An info | og nmessage which is always | ogged.")
.error('An error |og nessage.')

.warn(' A warni ng | og nessage. ")
.lifecycle('Alifecycle info | og nessage."')

.info('An info | og nmessage."')
. debug("' A debug | og nessage. ')
.trace(' A trace | og nessage. ')

Y ou can aso hook into Gradle's logging system from within other classes used in the build (classes from the bui | d
directory for example). Simply use an SLFA4J logger. You can use this logger the same way as you use the
provided logger in the build script.

Page 122 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/logging/Logger.html

Example 18.3. Using SL F4J to write log messages
buil d. gradl e

i mport org.slf4j.Logger
i mport org.slf4j.LoggerFactory

Logger sl f4jLogger = LoggerFactory. getlLogger (' some-| ogger')
sl f4j Logger.info(' An info | og nessage | ogged using SLF4j"')

18.3. Logging from external tools and libraries

Internally, Gradle uses Ant and lvy. Both have their own logging system. Gradle redirects their logging output
into the Gradle logging system. There is a 1:1 mapping from the Ant/lvy log levels to the Gradle log levels,
except the Ant/lvy TRACE log level, which is mapped to Gradle DEBUG log level. This means the default
Gradle log level will not show any Ant/lvy output unlessit is an error or awarning.

There are many tools out there which still use standard output for logging. By default, Gradle redirects standard
output to the QUI ET log level and standard error to the ERROR level. This behavior is configurable. The project
object provides a Loggi ngManager , which allows you to change the log levels that standard out or error are
redirected to when your build script is evaluated.

Example 18.4. Configuring standard output capture

buil d. gradl e

| oggi ng. capt ur eSt andar dCut put LogLevel . | NFO

println 'A nessage which is | ogged at | NFO | evel '

To change the log level for standard out or error during task execution, tasks also provide a
Loggi ngManager .

Example 18.5. Configuring standard output capture for atask

buil d. gradl e

task loglnfo {
| oggi ng. capt ur eSt andar dOut put LogLevel . | NFO
doFirst {

println 'A task nmessage which is | ogged at |INFO | evel'

}

Gradle also provides integration with the Java Util Logging, Jakarta Commons Logging and Log4j logging
toolkits. Any log messages which your build classes write using these logging toolkits will be redirected to
Gradl€'s logging system.

Page 123 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/logging/LoggingManager.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/logging/LoggingManager.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/logging/LoggingManager.html

18.4. Changing what Gradle logs

You can replace much of Gradle's logging Ul with your own. You might do this, for example, if you want to
customize the Ul in some way - to log more or less information, or to change the formatting. Y ou replace the
logging using the Gr adl e. uselLogger () method. Thisis accessible from a build script, or an init script, or
via the embedding API. Note that this completely disables Gradle's default output. Below is an example init
script which changes how task execution and build completion is logged.
Example 18.6. Customizing what Gradlelogs
init.gradle

uselLogger (new Cust omEvent Logger ())

cl ass CustonEvent Logger extends Buil dAdapter inplenents TaskExecutionLi stener {

public void beforeExecute(Task task) {
println "[$task. nane]"

}

public void afterExecute(Task task, TaskState state) {

println()

}

public void buil dFi ni shed(Bui |l dResult result) {
println "build conpleted
if (result.failure !'= null) {
result.failure.printStackTrace()

Outputof gradle -1 init.gradle build
> gradle -1 init.gradle build
[conpi | e]

conpi ling source

[test Conpil €]
conpi ling test source

[test]
running unit tests

[bui | d]

buil d conpl et ed

Your logger can implement any of the listener interfaces listed below. When you register a logger, only the
logging for the interfaces that it implements is replaced. Logging for the other interfaces is left untouched. Y ou
can find out more about the listener interfaces in Section 56.6, “ Responding to the lifecycle in the build script”.

® Bui |l dLi st ener
® Project Eval uati onLi st ener

Page 124 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:useLogger(java.lang.Object)
http://www.gradle.org/docs/2.3/javadoc/org/gradle/BuildListener.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/ProjectEvaluationListener.html

®* TaskExecuti onG aphLi st ener
® TaskExecuti onLi st ener
®* TaskActi onLi st ener

Page 125 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/execution/TaskExecutionGraphListener.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/execution/TaskExecutionListener.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/execution/TaskActionListener.html

19

The Gradle Daemon

19.1. Enter the daemon

The Gradle daemon (sometimes referred as the build daemon) aims to improve the startup and execution time
of Gradle.

We came up with several use cases where the daemon is very useful. For some workflows, the user invokes
Gradle many times to execute a small number of relatively quick tasks. For example:

* When using test driven development, where the unit tests are executed many times.
* When developing aweb application, where the application is assembled many times.
® \When discovering what a build can do, where gr adl e t asks isexecuted a number of times.

For these workflows, it isimportant that the startup cost of invoking Gradleis as small as possible.

In addition, user interfaces can provide some interesting features if the Gradle model can be built relatively
quickly. For example, the daemon might be useful for the following scenarios:

® Content assistancein the IDE
® Livevisualisation of the build in a GUI
® TabcompletioninaCLI

In general, snappy behavior of the build tool is always handy. If you try using the daemon for your local builds,
you won't want to go back.

The Tooling API (see Chapter 63, Embedding Gradle) uses the daemon all the time, e.g. you cannot officially
use the Tooling APl without the daemon. This means that whenever you are using the STS Gradle plugin for
Eclipse or the Gradle support in Intellij IDEA, you're already using the Gradle Daemon.

In the future, there are plans for more features in the daemon;

® Snappy up-to-date checks: use native file system change notifications (e.g. viajdk7 nio.2) to preemptively
perform up-to-date analysis.

* Even faster builds: preemptively evaluate projects, so that the model is ready when the user next invokes
Gradle.

* Did we mention faster builds? The daemon can potentially preemptively download dependencies or check
for new versions of snapshot dependencies.

® Utilize apool of reusable processes available for compilation and testing. For example, both the Groovy and
Scala compilers have alarge startup cost. The build daemon could maintain a process with Groovy and/or
Scala aready |oaded.

Page 126 of 448

® Preemptive execution of certain tasks, for example compilation. Quicker feedback.
® Fast and accurate bash tab compl etion.
® Periodically garbage collect the Gradle caches.

19.2. Reusing and expiration of daemons

The basic ideais that the Gradle command forks a daemon process, which performs the actual build. Subsequent
invocations of the Gradle command will reuse the daemon, avoiding the startup costs. Sometimes we cannot use
an existing daemon because it is busy or its Java version or jvm arguments are different. For exact details on
when exactly a new daemon process is forked read the dedicated section below. The daemon process
automatically expires after 3 hours of idle time.

Here are al situationsin which we fork a new daemon process:

* |f the daemon processis currently busy running some job, a brand new daemon process will be started.

* Wefork aseparate daemon process per Java home. So even if there is some idle daemon waiting for build
reguests but you happen to run a build with a different Java home then a brand new daemon will be forked.

* Wefork aseparate daemon process if the jvm arguments for the build are sufficiently different. For example
we will not fork a new daemon if a some system property has changed. However if the -Xmx memory
setting changed or some fundamental immutable system property changed (e.g. file.encoding) then a new
daemon will be forked.

* At the moment the daemon is coupled with a particular version of Gradle. This means that even if some
daemonisidle but you are running the build with a different version of Gradle, a new daemon will be
started. This also has a consequence for the - - st op command line instruction: this command will only stop
daemons that were started with Gradle version that is executing - - st op.

We plan to improve the functionality of managing and pooling the daemonsin the future.

19.3. Usage and troubleshooting

For command line usage, look at the dedicated section in Appendix D, Gradle Command Line. If you are tired
of using the same command line options again and again, take a look at Section 20.1, “ Configuring the build
environment via gradle.properties’. This section contains information on how to configure certain behavior of
the daemon (including turning on the daemon by default) in a more 'persistent’ way.

Some ways of troubleshooting the Gradle daemon:

* |f you have a problem with your build, try temporarily disabling the daemon (you can pass the command
line switch - - no- daenon).

® Qccasionally, you may want to stop the daemons either viathe - - st op command line option or in amore
forceful way.

* Thereisadaemon log file, which by default islocated in the Gradle user home directory.

® You may want to start the daemonin - - f or egr ound mode to observe how the build is executed.

Page 127 of 448

19.4. Configuring the daemon

Some daemon settings, such as VM arguments, memory settings or the Java home, can be configured. Please
find more information in Section 20.1, “ Configuring the build environment via gradle.properties’

Page 128 of 448

20

The Build Environment

20.1. Configuring the build environment via
gradle.properties

Gradle provides several options that make it easy to configure the Java process that will be used to execute your
build. While it's possible to configure these in your local environment via GRADLE_OPTS or JAVA_OPTS,
certain settings like VM memory settings, Java home, daemon on/off can be more useful if they can be
versioned with the project in your VCS so that the entire team can work with a consistent environment. Setting
up a consistent environment for your build is as simple as placing these settingsinto agr adl e. properti es
file. The configuration is applied in following order (if an option is configured in multiple locations the last one
wins):

* fromgradl e. properties inproject build dir.
* fromgradl e. propertiesingradl e user hone.
® from system properties, e.g. when - Dsone. pr operty isset on the command line.

The following properties can be used to configure the Gradle build environment:

org. gradl e. daenon
When set to t r ue the Gradle daemon is used to run the build. For local developer builds thisis our favorite
property. The developer environment is optimized for speed and feedback so we nearly always run Gradle
jobs with the daemon. We don't run ClI builds with the daemon (i.e. a long running process) as the Cl
environment is optimized for consistency and reliability.

org. gradl e.java. hone
Specifies the Java home for the Gradle build process. The value can be set to either aj dk or j r e location,
however, depending on what your build does, j dk is safer. A reasonable default is used if the setting is
unspecified.

org.gradle.jvmargs
Specifies the jvmargs used for the daemon process. The setting is particularly useful for tweaking memory
settings. At the moment the default settings are pretty generous with regards to memory.

org. gradl e. confi gur eondemand
Enables new incubating mode that makes Gradle sel ective when configuring projects. Only relevant projects
are configured which results in faster builds for large multi-projects. See Section 57.1.1.1, “Configuration on
demand”.

org. gradl e. parall el

Page 129 of 448

When configured, Gradle will run in incubating parallel mode.

20.1.1. Forked Java processes

Many settings (like the Java version and maximum heap size) can only be specified when launching a new JVM
for the build process. This means that Gradle must launch a separate VM process to execute the build after
parsing the various gr adl e. properti es files. When running with the daemon, a VM with the correct
parameters is started once and reused for each daemon build execution. When Gradle is executed without the
daemon, then a new JVvM must be launched for every build execution, unless the VM launched by the Gradle
start script happens to have the same parameters.

This launching of an extra JVM on every build execution is quite expensive, which is why if you are setting
either org. gradl e. java. honme or org. gradl e.j vimar gs we highly recommend that you use the
Gradle Daemon. See Chapter 19, The Gradle Daemon for more details.

20.2. Accessing the web via a proxy

Configuring an HTTP proxy (for downloading dependencies, for example) is done via standard JVM system
properties. These properties can be set directly in the build script; for example, setting the proxy host would be
done with System set Property(' http. proxyHost', 'ww. sonehost.org'). Alternatively,
the properties can be specified in a gradle.properties file, either in the build's root directory or in the Gradle
home directory.

Example 20.1. Configuring an HTTP proxy

gradl e. properties

syst enPr op. htt p. pr oxyHost =www. sonehost . org
syst enPr op. htt p. pr oxyPort =8080

syst enPr op. htt p. proxyUser =useri d
syst enPr op. htt p. pr oxyPasswor d=passwor d
syst enPr op. ht t p. nonPr oxyHost s=*. nonpr oxyr epos. conj | ocal host

There are separate settings for HTTPS,
Example 20.2. Configuring an HTTPS proxy

gradl e. properties

syst enPr op. htt ps. pr oxyHost =www. sonehost . org
syst enProp. htt ps. pr oxyPort =8080

syst enPr op. htt ps. proxyUser =useri d
syst enPr op. htt ps. pr oxyPasswor d=passwor d
syst enPr op. htt ps. nonPr oxyHost s=*. nonpr oxyr epos. conj | ocal host

We could not find a good overview for all possible proxy settings. One place to look are the constants in afile
from the Ant project. Here's a link to the Subversion view. The other is a Networking Properties page from the
JDK docs. If anyone knows of a better overview, please let us know viathe mailing list.

Page 130 of 448

http://svn.apache.org/viewvc/ant/core/trunk/src/main/org/apache/tools/ant/util/ProxySetup.java?view=markup&pathrev=556977
http://download.oracle.com/javase/6/docs/technotes/guides/net/properties.html

20.2.1. NTLM Authentication

If your proxy requires NTLM authentication, you may need to provide the authentication domain as well as the
username and password. There are 2 ways that you can provide the domain for authenticating to aNTLM proxy:

® Setthehttp. proxyUser system property to avaluelike domai n/ user namne.
® Provide the authentication domain viathe ht t p. aut h. nt I m donai n system property.

Page 131 of 448

21

Gradle Plugins

Gradle at its core intentionally provides very little for real world automation. All of the useful features, like the
ability to compile Java code, are added by plugins. Plugins add new tasks (e.g. JavaConpi | €), domain
objects (e.g. Sour ceSet), conventions (e.g. Java source islocated at sr ¢/ mai n/ j ava) aswell as extending
core objects and objects from other plugins.

In this chapter we will discuss how to use plugins and the terminology and concepts surrounding plugins.

21.1. What plugins do

Applying aplugin to aproject allows the plugin to extend the project's capabilities. It can do things such as:

® Extend the Gradle model (e.g. add new DSL elements that can be configured)
® Configure the project according to conventions (e.g. add new tasks or configure sensible defaults)
* Apply specific configuration (e.g. add organizational repositories or enforce standards)

By applying plugins, rather than adding logic to the project build script, we can reap a number of benefits.
Applying plugins:

® Promotes reuse and reduces the overhead of maintaining similar logic across multiple projects
* Allows ahigher degree of modularization, enhancing comprehensibility and organization
® Encapsulatesimperative logic and allows build scripts to be as declarative as possible

21.2. Types of plugins

There are two general types of plugins in Gradle, script plugins and binary plugins. Script plugins are
additional build scripts that further configure the build and usually implement a declarative approach to
manipulating the build. They are typically used within a build although they can be externalized and accessed
from a remote location. Binary plugins are classes that implement the Pl ugi n interface and adopt a
programmatic approach to manipulating the build. Binary plugins can reside within a build script, within the
project hierarchy or externally in aplugin jar.

21.3. Applying plugins

Plugins are said to be applied, which is done viathe Pr oj ect . appl y() method. The application of plugins
is idempotent. That is, the same plugin can be applied multiple times. If the plugin has previously been applied,
any further applications are safe and will have no effect.

Page 132 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.SourceSet.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:apply(java.util.Map)

21.3.1. Script plugins
Example 21.1. Applying a script plugin
buil d. gradl e

apply from 'other.gradle

Script plugins can be applied from a script on the local filesystem or at a remote location. Filesystem locations
are relative to the project directory, while remote script locations are specified with an HTTP URL. Multiple
script plugins (of either form) can be applied to a given build.

21.3.2. Binary plugins
Example 21.2. Applying a binary plugin
buil d. gradl e

apply plugin: 'java

Plugins can be applied using a plugin id. The plugin id serves as a unique identifier for a given plugin. Core
plugins register a short name that can be used as the plugin id. In the above case, we are using the short name ‘j ava
" to apply the JavaPl ugi n. Community plugins, on the other hand, use afully qualified form for the plugin id
(e.g.com gi t hub. f 0o. bar), although some legacy plugins may still utilize a short, unqualified form.

Rather than using aplugin id, plugins can also be applied by simply specifying the class of the plugin:

Example 21.3. Applying a binary plugin by type
buil d. gradl e

apply plugin: JavaPl ugin

The JavaPl ugi n symbol in the above sample refers to the the JavaPl ugi n. This class does not strictly
need to be imported as the or g. gr adl e. api . pl ugi ns package is automatically imported in all build
scripts (see Appendix E, Existing IDE Support and how to cope without it). Furthermore, it is not necessary to
append . cl ass toidentify aclassliteral in Groovy asitisin Java.

21.3.2.1. Locations of binary plugins

A plugin is simply any class that implements the PI ugi n interface. Gradle provides the core plugins as part of
its distribution so simply applying the plugin as above is al you need to do. However, non-core binary plugins
need to be available to the build classpath before they can be applied. This can be achieved in a number of ways,
including:

® Defining the plugin as an inline class declaration inside a build script.

* Defining the plugin as a source file under the buildSrc directory in the project (see Section 60.3, “Build
sourcesinthebui | dSr ¢ project”).

® Including the plugin from an external jar defined as a buildscript dependency (see Section 21.4, “ Applying

Page 133 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/plugins/JavaPlugin.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/plugins/JavaPlugin.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/Plugin.html

plugins with the buildscript block™).
® |ncluding the plugin from the plugin portal using the plugins DSL (see Section 21.5, “Applying plugins with
the plugins DSL").

For more on defining your own plugins, see Chapter 59, Writing Custom Plugins.

21.4. Applying plugins with the buildscript block

Binary plugins that have been published as external jar files can be added to a project by adding the plugin to
the build script classpath and then applying the plugin. External jars can be added to the build script classpath
usingthebui | dscri pt {} block asdescribed in Section 60.5, “ External dependencies for the build script”.

Example 21.4. Applying a plugin with the buildscript block
buil d. gradl e

bui I dscript {
repositories {
jcenter ()

}

dependenci es {

cl asspath "com jfrog. bintray. gradl e: gradl e-bi ntray-pl ugin: 0. 4. 1"

}
}

apply plugin: "comjfrog.bintray"

21.5. Applying plugins with the plugins DSL

The plugins DSL is currently incubating. Please be aware that the DSL and other configuration may
changein later Gradle versions.

The new plugins DSL provides a more succinct and convenient way to declare plugin dependencies. It works
with the new Gradle plugin portal to provide easy access to both core and community plugins. The plugins
script block configures an instance of Pl ugi nDependenci esSpec.

To apply acore plugin, the short name can be used:

Example 21.5. Applying a core plugin

buil d. gradl e

pl ugi ns {
id'java'

}

To apply acommunity plugin from the portal, the fully qualified plugin id must be used:

Page 134 of 448

http://plugins.gradle.org
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugin.use.PluginDependenciesSpec.html

Example 21.6. Applying a community plugin

bui I d. gradl e

pl ugi ns {
id "comjfrog. bintray" version "0.4.1"

}

No further configuration is necessary. Specifically, there is no need to configure the buildscript classpath.
Gradle will resolve the plugin in the plugin portal, locate it, and make it available to the build.

See Pl ugi nDependenci esSpec for more information on using the Plugin DSL.

21.5.1. Limitations of the plugins DSL

The new way to add plugins to a project is much more than a more convenient syntax. The new DSL is
processed very differently to the old one. The new mechanism allows Gradle to determine the plugins in use
very early and very quickly. This allows Gradle to do smart things such as:

® Optimize the loading and reuse of plugin classes.

* Allow different plugins to use different versions of dependencies.

* Provide editors detailed information about the potential properties and values in the buildscript for editing
assistance.

This requires that plugins be specified in away that Gradle can easily and quickly extract, before executing the
rest of the build script. It also requires that the definition of plugins to use be somewhat static.

There are some key differences between the new plugin mechanism and the “traditional” appl y() method
mechanism. There are also some constraints, some of which are temporary limitations while the mechanism is
still being devel oped and some are inherent to the new approach.

21.5.1.1. Constrained Syntax

The new pl ugi ns {} block does not support arbitrary Groovy code. It is constrained, in order to be
idempotent (produce the same result every time) and side effect free (safe for Gradle to execute at any time).

Theformis:

pl ugi ns {

id «plugin id» version «plugin version»

}

Where «pl ugi n versi on» and «pl ugi n i d» must be constant, literal, strings. No other statements are
alowed; their presence will cause a compilation error.

Thepl ugi ns {} block must also be atop level statement in the buildscript. It cannot be nested inside another
construct (e.g. an if-statement or for-loop).

Page 135 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.plugin.use.PluginDependenciesSpec.html

21.5.1.2. Can only be used in build scripts

The pl ugi ns {} block can currently only be used in a project's build script. It cannot be used in script
plugins, the settings.gradle file or init scripts.

Future versions of Gradle will remove this restriction.

21.5.1.3. Cannot be used in conjunction with subprojects{}, alprojects{}, etc

It is not possible to use the familiar pattern of applying a plugin to multiple projects at once using
subproj ects {}, etc at the moment. There is currently no mechanism for applying a plugin to multiple

projects at once. At the moment, each project that requires a plugin must declare soin the pl ugi ns {} block
in its buildscript.

Future versions of Gradle will remove thisrestriction.

If the restrictions of the new syntax are prohibitive, the recommended approach isto apply plugins using the buildsci

21.6. Finding community plugins

Gradle has a vibrant community of plugin developers who contribute plugins for a wide variety of capabilities.
The Gradle plugin portal provides an interface for searching and exploring community plugins.

21.7. More on plugins

This chapter aims to serve as an introduction to plugins and Gradle and the role they play. For more information
on theinner workings of plugins, see Chapter 59, Writing Custom Plugins.

Page 136 of 448

http://plugins.gradle.org

22

Standard Gradle plugins

There are anumber of pluginsincluded in the Gradle distribution. These are listed below.

22.1. Language plugins

These plugins add support for various languages which can be compiled for and executed in the VM.

Table 22.1. Language plugins

Plugin
Id

j ava

gr oovy

scal a

antlr

Automatically Works
applies with

j ava- base -

j ava, gr oovy- base

j ava, scal a- base

j ava -

Description

Adds Java compilation, testing and bundling capabilities to a
project. It serves as the basis for many of the other Gradle
plugins. See also Chapter 7, Java Quickstart.

Adds support for building Groovy projects. See also Chapter 9,
Groovy Quickstart.

Adds support for building Scala projects.

Adds support for generating parsers using Antlr.

22.2. Incubating language plugins

These plugins add support for various languages:

Page 137 of 448

http://www.antlr.org/

Table 22.2. Language plugins

Plugin Id Automatically Works Description
applies with

assenbl er - - Adds native assembly language capabilities to
aproject.

C - - Adds C source compilation capabilities to a
project.

cpp - - Adds C++ source compilation capabilitiesto a
project.

obj ective-c - - Adds Objective-C source compilation

capabilities to a project.

obj ecti ve-cpp - - Adds Objective-C++ source compilation
capabilities to a project.

Wi ndows- r esour ces Adds support for including Windows

resources in native binaries.

22.3. Integration plugins

These plugins provide some integration with various runtime technol ogies.

Page 138 of 448

Table 22.3. Integration plugins

Plugin Id

application

ear

jetty

maven

osgi

war

Automatically
applies

j ava

war

j ava- base

j ava

Works
with

j ava

j ava,
war

j ava

Description

Adds tasks for running and bundling a Java project as a
command-line application.

Adds support for building J2EE applications.

Deploys your web application to a Jetty web container
embedded in the build. See also Chapter 10, Web
Application Quickstart.

Adds support for publishing artifacts to Maven
repositories.

Adds support for building OSGi bundles.

Adds support for assembling web application WAR files.
See aso Chapter 10, Web Application Quickstart.

22.4. Incubating integration plugins

These plugins provide some integration with various runtime technol ogies.

Page 139 of 448

Table 22.4. Incubating integration plugins

Works
with

Plugin Id Automatically

applies

di stribution

java-library-distribution java,distribution

i vy-publish - j ava,
war

maven- publ i sh - j ava,
war

Description

Adds support for building ZIP
and TAR distributions.

Adds support for building ZIP
and TAR distributions for a Java
library.

This plugin provides a new DSL
to support publishing artifacts to
Ivy repositories, which improves
on the existing DSL.

This plugin provides a new DSL
to support publishing artifacts to
Maven repositories, which
improves on the existing DSL.

22.5. Software development plugins

These plugins provide help with your software devel opment process.

Table 22.5. Softwar e development plugins

Plugin Id Automatically Works
applies with

announce - -

bui | d-announcenents announce -

checkstyl e j ava- base -

Description

Publish messages to your favourite
platforms, such as Twitter or Growl.

Sends local announcements to your
desktop about interesting events in
the build lifecycle.

Performs quality checks on your
project's Java source files using
Checkstyle and generates reports
from these checks.

Page 140 of 448

http://checkstyle.sourceforge.net/index.html

codenarc groovy- base - Performs quality checks on your
project's Groovy source files using
CodeNarc and generates reports
from these checks.

eclipse - j ava,gr oov@enerates files that are used by
,scal a Eclipse IDE, thus making it possible

to import the project into Eclipse.

See also Chapter 7, Java Quickstart.

eclipse-wp - ear,war Does the same as the eclipse plugin
plus generates eclipse WTP (Web
Tools Platform) configuration files.
After importing to eclipse your
war/fear projects should be
configured to work with WTP. See
also Chapter 7, Java Quickstart.

fi ndbugs j ava- base - Performs quality checks on your
project's Java source files using
FindBugs and generates reports
from these checks.

i dea - j ava Generates files that are used by
Intellij IDEA IDE, thus making it
possible to import the project into
IDEA.

j depend j ava- base - Performs quality checks on your
project's source files using JDepend
and generates reports from these
checks.

prd j ava- base - Performs quality checks on your
project's Java source files using
PMD and generates reports from
these checks.

proj ect-report reporting-base - Generates reports containing useful
information about your Gradle build.

si gnhi ng base - Adds the ability to digitaly sign
built files and artifacts.

Page 141 of 448

http://codenarc.sourceforge.net/index.html
http://eclipse.org
http://findbugs.sourceforge.net
http://www.jetbrains.com/idea/index.html
http://clarkware.com/software/JDepend.html
http://pmd.sourceforge.net

sonar - javerbase, Provides integration with the Sonar
java, code quality platform. Superceeded
jacoco by thesonar - r unner plugin.

22.6. Incubating software development plugins

These plugins provide help with your software devel opment process.

Table 22.6. Softwar e development plugins

Plugin Id Automatically Works Description
applies with

bui | d- dashboar d reporting-base - Generates build dashboard report.

build-init wrapper - Adds support for initializing a new Gradle
build. Handles converting a Maven build to
aGradle build.

cunit - - Adds support for running CUnit tests.

j acoco reporting-base java Provides integration with the JaCoCo code

coverage library for Java

sonar - runner - javabase, Provides integration with the Sonar code
java, quality platform. Supersedes the sonar
jacoco plugin.

vi sual - st udi o - native Adds integration with Visual Studio.
language
plugins

wr apper - - Adds a W apper task for generating

Gradle wrapper files.
java-gradl e-plugin java Assists with development of Gradle plugins

by providing standard plugin build
configuration and validation.

Page 142 of 448

http://www.sonarsource.org
http://cunit.sourceforge.net
http://www.eclemma.org/jacoco/
http://www.sonarsource.org
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

22.7. Base plugins

These plugins form the basic building blocks which the other plugins are assembled from. They are available for
you to use in your build files, and are listed here for completeness. However, be aware that they are not yet
considered part of Gradle's public API. As such, these plugins are not documented in the user guide. Y ou might
refer to their APl documentation to learn more about them.

Table 22.7. Base plugins

Plugin Id Description

base Adds the standard lifecycle tasks and configures reasonable defaults for the archive tasks:

® addsbuild Conf i gur at i onNane tasks. Those tasks assemble the artifacts
belonging to the specified configuration.

¢ addsupload Conf i gur at i onNane tasks. Those tasks assemble and upload the
artifacts belonging to the specified configuration.

® configures reasonable default values for all archive tasks (e.g. tasks that inherit from
Abst ract Ar chi veTask). For example, the archive tasks are tasks of types. Jar ,
Tar , Zi p. Specifically, dest i nati onDi r, baseNane and ver si on properties
of the archive tasks are preconfigured with defaults. Thisis extremely useful because
it drives consistency across projects; the consistency regarding naming conventions of
archives and their location after the build compl eted.

java-base Adds the source sets concept to the project. Does not add any particular source sets.
groovy-base Adds the Groovy source sets concept to the project.
scala-base Adds the Scala source sets concept to the project.

reporting-base Adds some shared convention properties to the project, relating to report generation.

22.8. Third party plugins

You can find alist of external plugins at the Gradle Plugins site.

Page 143 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Zip.html
http://plugins.gradle.org/

23

The Java Plugin

The Java plugin adds Java compilation along with testing and bundling capabilities to a project. It serves as the
basis for many of the other Gradle plugins.

23.1. Usage

To use the Java plugin, include the following in your build script:

Example 23.1. Using the Java plugin

bui I d. gradl e

apply plugin: 'java'

23.2. Source sets

The Java plugin introduces the concept of a source set. A source set is simply a group of source files which are
compiled and executed together. These source files may include Java source files and resource files. Other
plugins add the ability to include Groovy and Scala source files in a source set. A source set has an associated
compile classpath, and runtime classpath.

One use for source sets is to group source files into logical groups which describe their purpose. For example,
you might use a source set to define an integration test suite, or you might use separate source sets to define the
API and implementation classes of your project.

The Java plugin defines two standard source sets, called mai n and t est . The mai n source set contains your
production source code, which is compiled and assembled into a JAR file. Thet est source set contains your
test source code, which is compiled and executed using JUnit or TestNG. These can be unit tests, integration
tests, acceptance tests, or any combination that is useful to you.

23.3. Tasks

The Java plugin adds a number of tasks to your project, as shown below.

Table 23.1. Java plugin - tasks

Task name Dependson Type Description

Page 144 of 448

compi | eJava

pr ocessResour ces

cl asses

conpi | eTest Java

processTest Resour ces

test Cl asses

jar

j avadoc

t est

upl oadAr chi ves

cl ean

All tasks which produce the
compile classpath. This
includesthej ar task for
project dependencies
includedintheconpi | e
configuration.

Theconpi | eJava task and
thepr ocessResour ces
task. Some plugins add
additional compilation tasks.

conpi | e, plusall tasks
which produce the test
compile classpath.

conpi | eTest Java task

and pr ocessTest Resour ces

task. Some plugins add
additional test compilation
tasks.

conpile

conpile

conpi | e,compi | eTest,
plus all tasks which produce
the test runtime classpath.

The tasks which produce the
artifactsinthear chi ves
configuration, including j ar .

JavaConpi |l e

Copy

Task

JavaConpi |l e

Copy

Task

Jar

Javadoc

Test

Upl oad

Del et e

Compiles
production Java
source filesusing
javac.

Copies production
resources into the
production classes
directory.

Assembles the
production classes
directory.

Compilestest Java
source filesusing
javac.

Copiestest
resources into the
test classes
directory.

Assembles the test
classes directory.

Assemblesthe JAR
file

Generates API
documentation for
the production Java
source, using
Javadoc

Runs the unit tests
using JUnit or
TestNG.

Uploads artifactsin
thear chi ves
configuration,
including the JAR
file.

Deletes the project
build directory.

Page 145 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Upload.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Delete.html

cl eanTaskNane - Del et e Deletesfiles
created by specified
task. cl eanJar
will delete the JAR
file created by thej ar
task, and cl eanTest
will delete the test
results created by
thet est task.

For each source set you add to the project, the Java plugin adds the following compilation tasks:

Table 23.2. Java plugin - sour ce set tasks

Task name Dependson Type Description

conpi | eSour cAibeasBawaich produce the source set's compile JavaConpi l e Compiles
classpath. the given

source set's
Java source
filesusing
javac.

pr ocessSour ceSet Resour ces Copy Copiesthe
given
source set's
resources
into the
classes
directory.

sour ceSet Cl aBleesonpi | eSour ceSet Java task and the pr ocess¥BagkceSet Resouhssesbles

task. Some plugins add additional compilation tasks the given

for the source set. source set's
classes
directory.

The Java plugin also adds a number of tasks which form alifecycle for the project:

Page 146 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Task.html

Table 23.3. Java plugin - lifecycle tasks

Task name

assenbl e

check

buil d

bui | dNeeded

bui | dDependent s

bui | dConf i gNane

upl oadConf i gNane

Dependson

All archive tasks in the project,
including j ar . Some plugins add
additional archive tasksto the
project.

All verification tasksin the
project, including t est . Some

plugins add additional verification
tasks to the project.

check and assenbl e

bui | d and bui | dNeeded tasks
inall project lib dependencies of
thet est Runt i me configuration.

bui | d and bui | dDependent s
tasksin all projects with a project

Type
Task

Task

Task

Task

Task

Description

Assembles dl the archivesin
the project.

Performs al verification
tasksin the project.

Performs afull build of the
project.

Performs afull build of the
project and all projectsit
depends on.

Performs afull build of the
project and all projects which

lib dependency on this projectinat est Runt i me depend onit.

configuration.

The tasks which produce the
artifacts in configuration
Conf i gNane.

The tasks which uploads the
artifactsin configuration
Conf i gNane.

Task

Upl oad

The following diagram shows the relationships between these tasks.

Figure23.1. Java plugin - tasks

Assemblesthe artifactsin the
specified configuration. The
task is added by the Base
plugin which isimplicitly
applied by the Java plugin.

Assembles and uploads the
artifactsin the specified
configuration. Thetask is
added by the Base plugin
which isimplicitly applied by
the Java plugin.

Page 147 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Upload.html

23.4. Project layout

The Java plugin assumes the project layout shown below. None of these directories need exist or have anything
in them. The Java plugin will compile whatever it finds, and handles anything which is missing.

Table 23.4. Java plugin - default project layout

Directory Meaning

src/ main/java Production Java source

src/ mai n/ resour ces Production resources
src/test/java Test Java source
src/test/resources Test resources

src/ sourceSet/java Java source for the given source set
src/ sourceSet/resources Resources for the given source set

23.4.1. Changing the project layout

Y ou configure the project layout by configuring the appropriate source set. This is discussed in more detail in
the following sections. Here is a brief example which changes the main Java and resource source directories.

Example 23.2. Custom Java sour ce layout
buil d. gradl e
sourceSets {
mai n {

java {
srcDir 'src/java'

}

resources {
srcDir 'src/resources'

23.5. Dependency management

The Java plugin adds a number of dependency configurations to your project, as shown below. It assigns those
configurations to tasks such ascomnpi | eJava andt est .

Page 148 of 448

Table 23.5. Java plugin - dependency configurations

Name Extends Used by tasks Meaning

compile - compileJava Compile time dependencies

runtime compile - Runtime dependencies

testCompile compile compileTestJava Additional dependenciesfor compiling tests.

testRuntime runtime, test Additional dependencies for running tests only.
testCompile

archives - uploadArchives Artifacts (e.g. jars) produced by this project.

default runtime - The default configuration used by a project

dependency on this project. Contains the artifacts and
dependencies required by this project at runtime.

Figure 23.2. Java plugin - dependency configurations

uploadArchives task ————‘Uﬁﬁ'ﬁi“—
-

__——-atdsjar”
jar task

T -addsdar
N

default compilelava task

————tised-by——

testRuntime

testCompile

————tsed-by————| compileTestlava task

For each source set you add to the project, the Java plugins adds the following dependency configurations:

Table 23.6. Java plugin - sour ce set dependency configurations

Name Extends Used by tasks Meaning

conpi | eSour ceSet Jdvampile time dependencies for the
given source set

sour ceSet Conpi |-e

Runtime dependencies for the given
source set

sour ceSet Runt i reour ceSet Conpi I-e

23.6. Convention properties

The Java plugin adds a number of convention properties to the project, shown below. You can use these
propertiesin your build script as though they were properties of the project object (see 77?).

Table 23.7. Java plugin - directory properties

Property name Type Default value Description

Page 149 of 448

reportsDi r Nane

reportsDir

t est Resul t sDi r Nane

testResultsDir

t est Report Di r Nane

test ReportDir

| i bsDi r Nane

i bsDir

di st sDi r Nane

distsDr

String

File
(read-only)

String

File
(read-only)

String

File
(read-only)

String

File
(read-only)

String

File
(read-only)

reports

bui | dDi r/ report sDi r Nane

test-results

The name of the
directory to
generate reports
into, relative to the
build directory.

The directory to
generate reports
into.

The name of the
directory to
generate test result
xml filesinto,
relative to the
build directory.

bui | dDi r/t est Resul t sDi r Nahee directory to

tests

generate test result
xml filesinto.

The name of the
directory to
generate the test
report into, relative
to the reports
directory.

reportsDir/testReport D r NBmedirectory to

l'ibs

bui 1 dDir/1i bsDi r Nanme

di stributions

bui | dDi r/ di st sDi r Nane

generate the test
report into.

The name of the
directory to
generate libraries
into, relative to the
build directory.

The directory to
generate libraries
into.

The name of the
directory to
generate
distributions into,
relative to the
build directory.

The directory to
generate
distributions into.

Page 150 of 448

docsDi r Nanme

docsDir

dependencyCacheDi r Name

dependencyCacheDi r

String

File
(read-only)

String

File
(read-only)

docs

bui | dDi r/ docsDi r Narre

dependency- cache

The name of the
directory to
generate
documentation
into, relative to the
build directory.

The directory to
generate
documentation
into.

The name of the
directory to use to
cache source
dependency
information,
relative to the
build directory.

bui | dDi r/ dependency Cache D meNdireetory to

use to cache
source dependency
information.

Page 151 of 448

Table 23.8. Java plugin - other properties

Property name Type Default value Description
sourceSet s Sour ceSet Cont ai ner Not null Containsthe
(read-only) project's
source sets.
sourceConpatibility JavaVersion.Canaso version of the current VM Javaversion
set using a String or a inuse compatibility
Number,eqg.' 1.5 orl.5 to use when
compiling
Java source.
targetConpatibility JavaVersion.Canaso sourceConpatibility Javaversion
set using a String or to generate
Number,eqg.' 1.5 orl.5 classesfor.
ar chi vesBaseNane String pr oj ect Nare The
basename to
use for
archives,
such as JAR
or ZIPfiles.
mani f est Mani f est an empty manifest The manifest
toincludein
al JARfiles.

These properties are provided by convention objects of type JavaPl ugi nConventi on, and
BasePl ugi nConventi on.

23.7. Working with source sets

You can access the source sets of a project using the sour ceSet s property. This is a container for the
project's source sets, of type Sour ceSet Cont ai ner. There is also a sourceSets { } script block,
which you can pass a closure to configure the source set container. The source set container works pretty much
the same way as other containers, such ast asks.

Page 152 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/tasks/SourceSetContainer.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/JavaVersion.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/JavaVersion.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/java/archives/Manifest.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.JavaPluginConvention.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.BasePluginConvention.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.BasePluginConvention.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/tasks/SourceSetContainer.html

Example 23.3. Accessing a sour ce set
buil d. gradl e

/1l Various ways to access the main source set
println sourceSets. main.out put.classesDir
println sourceSets[' nain'].output.classesDir
sourceSets {

println main. out put.classesDir

}

sourceSets {
mai n {

println output.classesDr

}
}

/'l lterate over the source sets
sourceSets. all {
println name

}

To configure an existing source set, you simply use one of the above access methods to set the properties of the
source set. The properties are described below. Here is an example which configures the main Java and
resources directories:

Example 23.4. Configuring the sour ce directories of a sour ce set
buil d. gradl e

sourceSets {
mai n {
java {
srcDir 'src/java'

}

resources {
srcDir 'src/resources'

23.7.1. Source set properties

The following table lists some of the important properties of a source set. Y ou can find more details in the API
documentation for Sour ceSet .

Table 23.9. Java plugin - source set properties

Property name Type Default value Description

nane Stri ng (read-only) Not null The name of the
source set, used
to identify it.

Page 153 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.SourceSet.html

out put

out put.classesDir

out put . resourcesDir

compi | ed asspat h

runti meCl asspath

j ava

java.srcDirs

Sour ceSet Qut put

(read-only)
File
File

Fil eCol | ection

Fil eCol | ection

Sour ceDi r ect or ySet
(read-only)

Set <Fi | e>. Can set
using anything described
in Section 16.5,
“Specifying a set of input
files'.

Not null

The output files
of the source set,
containing its
compiled classes
and resources.

bui | dDi r/ cl asses/ nahee directory to

generate the
classes of this
source set into.

bui | dDi r/ r esour ces/ Hamdirectory to

compi | eSour ceSet
configuration.

generate the
resources of this
source set into.

The classpath to
use when
compiling the
source files of
this source set.

out put +runti meSour Th&edbsspath to

configuration.

Not null

use when
executing the
classes of this
source set.

The Java source

files of this

source set.
Containsonly . j ava
filesfound in the
Java source
directories, and
excludes all

other files.

[proj ect Di r/ src/ nantiig souede

directories
containing the
Java source files
of this source
Set.

Page 154 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.SourceSetOutput.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/SourceDirectorySet.html

resour ces

resources.srcDirs

al | Java

al | Source

Sour ceDi r ect or ySet
(read-only)

Set <Fi | e>. Can set
using anything described
in Section 16.5,
“Specifying a set of input
files'.

Sour ceDi r ect or ySet
(read-only)

Sour ceDi r ect or ySet
(read-only)

Not null

The resources of
this source set.
Contains only
resources, and

excludesany . j ava

filesfound in the
resource source
directories.
Other plugins,
such asthe
Groovy plugin,
exclude
additional types
of filesfrom this
collection.

[proj ect Dir/ src/ nantfe ssimgr ces]

j ava

resources + java

directories
containing the
resources of this
source set.

All . j avafiles
of this source
set. Some
plugins, such as
the Groovy
plugin, add
additional Java
source filesto
this collection.

All sourcefiles
of this source
set. Thisinclude
all resourcefiles
and al Java
sourcefiles.
Some plugins,
such asthe
Groovy plugin,
add additional
source filesto
this collection.

Page 155 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/SourceDirectorySet.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/SourceDirectorySet.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/SourceDirectorySet.html

23.7.2. Defining new source sets

To define a new source set, you simply referenceitinthe sour ceSet s { } block. Here's an example:

Example 23.5. Defining a sour ce set

buil d. gradl e

sourceSets {

i nt Test

}

When you define a new source set, the Java plugin adds some dependency configurations for the source set, as
shown in Table 23.6, “Java plugin - source set dependency configurations’. Y ou can use these configurations to
define the compile and runtime dependencies of the source set.

Example 23.6. Defining sour ce set dependencies

buil d. gradl e

sourceSets {
i nt Test

}

dependenci es {
intTestConpile "junit:junit:4. 11"
i nt TestRuntine 'org.ow2. asmasmall: 4.0

The Java plugin also adds a number of tasks which assemble the classes for the source set, as shown in
Table 23.2, “Java plugin - source set tasks’. For example, for a source set called i nt Test , compiling the
classes for this source set is done by running gr adl e i nt Test d asses.

Example 23.7. Compiling a sour ce set

Output of gr adl e i nt Test Cl asses
> gradl e intTestC asses
:conpi | el nt Test Java
: processl nt Test Resour ces
tintTest d asses

BU LD SUCCESSFUL

Total tine: 1 secs

23.7.3. Some source set examples

Adding a JAR containing the classes of a source set:

Page 156 of 448

Example 23.8. Assembling a JAR for a sour ce set

bui I d. gradl e

task intTestJar(type: Jar) {

from sourceSets. i nt Test. out put

}

Generating Javadoc for a source set:

Example 23.9. Generating the Javadoc for a sour ce set
buil d. gradl e

task intTestJavadoc(type: Javadoc) {
source sourceSets.intTest.allJava

}

Adding atest suite to run the tests in a source set:

Example 23.10. Running testsin a sour ce set
buil d. gradl e

task intTest(type: Test) {
testC assesDir = sourceSets.intTest.output.classesDir

cl asspath = sourceSets.intTest.runti meC asspath

23.8. Javadoc

The j avadoc task is an instance of Javadoc. It supports the core Javadoc options and the options of the
standard doclet described in the reference documentation of the Javadoc executable. For a complete list of
supported Javadoc options consult the APl documentation of the following classes: Cor eJavadocOpti ons
and St andar dJavadocDocl et Opt i ons.

Table 23.10. Java plugin - Javadoc properties

Task Property Type Default Value
cl asspath Fil eColl ection sourceSet s. mai n. out put +sourceSets. m
sour ce Fi | eTr ee. Can set using sour ceSet s. nai n. al | Java

anything described in
Section 16.5, “ Specifying a set

of input files’.
destinationDir File docsDir/javadoc
title String The name and version of the project

Page 157 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
http://download.oracle.com/javase/1.5.0/docs/tooldocs/windows/javadoc.html#referenceguide
http://www.gradle.org/docs/2.3/javadoc/org/gradle/external/javadoc/CoreJavadocOptions.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/external/javadoc/StandardJavadocDocletOptions.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/FileTree.html

23.9. Clean

Thecl ean task isan instance of Del et e. It simply removes the directory denoted by its di r property.

Table 23.11. Java plugin - Clean properties

Task Property Type Default Value

dir File bui |l dDi r

23.10. Resources

The Java plugin uses the Copy task for resource handling. It adds an instance for each source set in the project.
Y ou can find out more about the copy task in Section 16.6, “Copying files’.

Table 23.12. Java plugin - ProcessResour ces properties

Task Property Type Default Value

srcDirs hj ect . Can set using anything described in sourceSet . resour ces
Section 16.5, “ Specifying a set of input files’.

destinationDir Fi | e. Can set using anything described in sour ceSet . out put . resourc
Section 16.1, “Locating files’.

23.11. CompileJava

The Java plugin adds a JavaConpi | e instance for each source set in the project. Some of the most common
configuration options are shown below.

Table 23.13. Java plugin - Compile properties

Task Property Type Default Value
cl asspath Fil eCol | ection sour ceSet . conpi | ed ass
source Fi | eTr ee. Can set using anything described in sour ceSet. java

Section 16.5, “ Specifying a set of input files’.

destinationDir File. sourceSet . out put. cl ass

By default, the Java compiler runs in the Gradle process. Setting opt i ons. f or k tot r ue causes compilation

to occur in a separate process. In the case of the Ant javac task, this means that a new process will be forked for
each compile task, which can slow down compilation. Conversely, Gradle's direct compiler integration (see
above) will reuse the same compiler process as much as possible. In both cases, all fork options specified with opt i
will be honored.

Page 158 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/FileTree.html

23.12. Incremental Java compilation

Starting with Gradle 2.1, it is possible to compile Java incrementally. This feature is still incubating. See the
JavaConpi | e task for information on how to enable it.

Main goals for incremental compilations are:

® Avoid wasting time compiling source classes that don't have to be compiled. This means faster builds,
especially when a change to a source class or ajar does not incur recompilation of many source classes that
depend on the changed input.

® Change as few output classes as possible. Classes that don't need to be recompiled remain unchanged in the
output directory. An example scenario when thisis really useful is using JRebel - the fewer output classes
are changed the quicker the jvm can use refreshed classes.

The incremental compilation at a high level:

® The detection of the correct set of stale classesis reliable at some expense of speed. The algorithm uses
bytecode analysis and deal s gracefully with compiler optimizations (inlining of non-private constants),
transitive class dependencies, etc. Example: When a class with a public constant changes, we eagerly
compile everything to avoid problems with constants inlined by the compiler. Down the road we will tune
the algorithm and caching so that incremental Java compilation can be a default setting for every compile
task.

* To makeincremental compilation fast, we cache class analysis results and jar snapshots. Theinitial
incremental compilation can be slower due to the cold caches.

23.13. Test

Thet est task is an instance of Test . It automatically detects and executes al unit testsin the t est source
set. It also generates areport once test execution is complete. JUnit and TestNG are both supported. Have alook
at Test for the complete API.

23.13.1. Test execution

Tests are executed in a separate VM, isolated from the main build process. The Test task's APl allows you
some control over how this happens.

There are a number of properties which control how the test process is launched. This includes things such as
system properties, VM arguments, and the Java executable to use.

You can specify whether or not to execute your tests in paralel. Gradle provides parallel test execution by
running multiple test processes concurrently. Each test process executes only a single test at a time, so you
generally don't need to do anything special to your tests to take advantage of this. The maxPar al | el For ks
property specifies the maximum number of test processes to run at any given time. The default is 1, that is, do
not execute the testsin parallel.

The test process sets the or g. gr adl e. t est . wor ker system property to a unique identifier for that test
process, which you can use, for example, in files names or other resource identifiers.

Page 159 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.testing.Test.html

Y ou can specify that test processes should be restarted after it has executed a certain number of test classes. This
can be a useful alternative to giving your test process avery large heap. The f or KEver y property specifies the
maximum number of test classes to execute in atest process. The default is to execute an unlimited number of
testsin each test process.

The task has an i gnor eFai | ur es property to control the behavior when tests fail. The Test task always
executes every test that it detects. It stops the build afterwards if i gnor eFai | ur es is false and there are
failing tests. The default value of i gnor eFai | ur es isfase.

Thet est Loggi ng property alows you to configure which test events are going to be logged and at which
detail level. By default, a concise message will be logged for every failed test. See
Test Loggi ngCont ai ner for how to tune test logging to your preferences.

23.13.2. Debugging

The test task provides a Test . get Debug() property that can be set to launch to make the VM wait for a
debugger to attach to port 5005 before proceeding with test execution.

This can also be enabled at invocation time viathe - - debug- j vmtask option (since Gradle 1.12).

23.13.3. Test filtering

Starting with Gradle 1.10, it is possible to include only specific tests, based on the test name pattern. Filtering is

adifferent mechanism than test classinclusion / exclusion that will be described in the next few paragraphs (- Dt es

,test.include andfriends). The latter is based on files, e.g. the physical location of the test implementation
class. File-level test selection does not support many interesting scenarios that are possible with test-level
filtering. Some of them Gradle handles now and some will be satisfied in future rel eases:

® Filtering at the level of specific test methods; executing a single test method

* Filtering based on custom annotations (future)

* Filtering based on test hierarchy; executing all tests that extend ceratain base class (future)

® Filtering based on some custom runtime rule, e.g. particular value of a system property or some static state
(future)

Test filtering feature has following characteristic:

® Fully quaified class name or fully qualified method name is supported, e.g. “org.gradle.SomeTest”,
“org.gradle.SomeT est.someM ethod”

® Wildcard ** is supported for matching any characters

¢ Command line option “--tests’ is provided to conveniently set the test filter. Especially useful for the classic
'single test method execution' use case. When the command line option is used, the inclusion filters declared
in the build script are ignored.

® Gradletriesto filter the tests given the limitations of the test framework API. Some advanced, synthetic tests
may not be fully compatible with filtering. However, the vast majority of tests and use cases should be
handled nestly.

* Test filtering supersedes the file-based test selection. The latter may be completely replaced in future. We
will grow the the test filtering api and add more kinds of filters.

Page 160 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.testing.logging.TestLoggingContainer.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.testing.logging.TestLoggingContainer.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:debug

Example 23.11. Filtering testsin the build script
buil d. gradl e
test {
filter {

//include specific nmethod in any of the tests
i ncl udeTest sMat chi ng " * U Check"

/linclude all tests from package

i ncl udeTest sMat ching "org.gradle.internal .*"

/linclude all integration tests
i ncl udeTest sMat ching "*I ntegTest"

For more details and examples please seethe Test Fi | t er reference.
Some examples of using the command line option:

® gradle test --tests org.gradl e. SoneTest. soneSpeci fi cFeature

® gradle test --tests *SomeTest.soneSpecifi cFeature

® gradle test --tests *SoneSpecificTest

® gradle test --tests all.in.specific.package*

® gradle test --tests *IntegTest

® gradle test --tests *IntegTest*ui*

® gradl e someTest Task --tests *Ui Test someQt her Test Task --tests *WebTest *ui

23.13.4. Single test execution via System Properties

This mechanism has been superseded by 'Test Filtering', described above.

Setting a system property of t askNane. si ngl e =t est NamePat t er n will only execute tests that match
the specified t est NanePat t er n. The t askNane can be a full multi-project path like “:subl:sub2:test” or
just the task name. The testNanmePattern will be used to form an include pattern of
“** [testNamePattern* .class’;. If no tests with this pattern can be found an exception is thrown. Thisis to shield
you from false security. If tests of more than one subproject are executed, the pattern is applied to each
subproject. An exception is thrown if no tests can be found for a particular subproject. In such a case you can
use the path notation of the pattern, so that the pattern is applied only to the test task of a specific subproject.
Alternatively you can specify the fully qualified task name to be executed. You can also specify multiple
patterns. Examples:

® gradle -Dtest.single=Thi sUni quel yNamedTest test

® gradle -Dtest.single=alb/ test

® gradle -DintegTest.single=*IntegrationTest integTest
® gradle -Dtest.single=:projl:test: Custonmer build

® gradle -DintegTest.single=c/d/ :projl:integTest

Page 161 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/tasks/testing/TestFilter.html

23.13.5. Test detection

The Test task detects which classes are test classes by inspecting the compiled test classes. By default it scans
dl . cl ass files. You can set custom includes / excludes, only those classes will be scanned. Depending on the
test framework used (JUnit / TestNG) the test class detection uses different criteria.

When using JUnit, we scan for both JUnit 3 and 4 test classes. If any of the following criteria match, the classis
considered to be a JUnit test class:

® Classor asuper class extends Test Case or G oovyTest Case
® Classor asuper classis annotated with @RrunW t h
® Classor asuper class contain a method annotated with @est

When using TestNG, we scan for methods annotated with @est .

Note that abstract classes are not executed. Gradle also scans up the inheritance tree into jar files on the test
classpath.

If you don't want to use test class detection, you can disable it by setting scanFor Test Cl asses to false.
This will make the test task only use includes / excludes to find test classes. If scanFor Test Cl asses is
false and no include / exclude patterns are specified, the defaultsare“**/ * Test s. cl ass”, “**/ *Test . cl ass
"and“**/ Abst ract *. cl ass” for include and exclude, respectively.

23.13.6. Test grouping

JUnit and TestNG allows sophisticated groupings of test methods.

For grouping JUnit test classes and methods JUnit 4.8 introduces the concept of categories. [9 Thet est task
alows the specification of the JUnit categories you want to include and exclude.

Example 23.12. JUnit Categories

buil d. gradl e

test {
useJUnit {
i ncl udeCat egories 'org.gradle.junit.CategoryA

excl udeCat egories 'org.gradle.junit.CategoryB

The TestNG framework has a quite similar concept. In TestNG you can specify different test groups. (19 The
test groups that should be included or excluded from the test execution can be configured in the test task.

Page 162 of 448

Example 23.13. Grouping TestNG tests

bui I d. gradl e

test {
useTest NG {
excl udeG oups 'integrationTests'

i ncl udeG oups 'unitTests'

23.13.7. Test reporting

The Test task generates the following results by default.

® AnHTML test report.

® Theresultsinan XML format that is compatible with the Ant JUnit report task. This format is supported by
many other tools, such as Cl servers.

® Resultsin an efficient binary format. The task generates the other results from these binary results.

There is dso a stand-alone Test Report task type which can generate the HTML test report from the binary
results generated by one or more Test task instances. To use thistask type, you need to defineadest i nati onDi

and the test results to include in the report. Here is a sample which generates a combined report for the unit tests
from subprojects:

Example 23.14. Creating a unit test report for subprojects

buil d. gradl e

subproj ects {
apply plugin: 'java'

/1l Disable the test report for the individual test task
test {
reports. htm . enabl ed = fal se
}
}

task test Report(type: TestReport) {
destinationDir = file("$buildDir/reports/all Tests")
/1 Include the results fromthe “test task in all subprojects
report On subproj ects*.test

You should note that the Test Report type combines the results from multiple test tasks and needs to
aggregate the results of individual test classes. This means that if a given test class is executed by multiple test
tasks, then the test report will include executions of that class, but it can be hard to distinguish individual
executions of that class and their output.

23.13.7.1. TestNG parameterized methods and reporting

TestNG supports parameterizing test methods, allowing a particular test method to be executed multiple times
with different inputs. Gradle includes the parameter values in its reporting of the test method execution.

Page 163 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.testing.TestReport.html
http://testng.org/doc/documentation-main.html#parameters

Given a parameterized test method named aTest Met hod that takes two parameters, it will be reported with
the name: aTest Met hod(toStri ngVal ueX Paranil, toStringVal ueX Paran®). This makes
identifying the parameter values for a particular iteration easy.

23.13.8. Convention values

Table 23.14. Java plugin - test properties

Task Property Type Default Value

testd assesDir File sourceSets. test.output.classesDir
cl asspath FileCol lection sourceSets.test.runtined asspath
testResultsDir File testResultsDir

test ReportDir File test ReportDir

testSrcDirs Li st<Fi |l e> sourceSets.test.java.srcDirs

23.14. Jar

Thej ar task creates a JAR file containing the class files and resources of the project. The JAR file is declared
asan artifact in the ar chi ves dependency configuration. This means that the JAR is available in the classpath
of a dependent project. If you upload your project into a repository, this JAR is declared as part of the
dependency descriptor. You can learn more about how to work with archives in Section 16.8, “Creating
archives” and artifact configurations in Chapter 52, Publishing artifacts.

23.14.1. Manifest

Each jar or war object has amani f est property with a separate instance of Mani f est . When the archive is
generated, a corresponding MANI FEST. MF file iswritten into the archive.
Example 23.15. Customization of MANIFEST.MF

buil d. gradl e

jar {
mani f est {
attributes("Inplenentation-Title": "G adle",

"l mpl enent ati on- Versi on": version)

You can create stand alone instances of a Mani f est. You can use that for example, to share manifest
information between jars.

Page 164 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/java/archives/Manifest.html

Example 23.16. Creating a manifest object.
buil d. gradl e

ext . sharedMani fest = nmani fest {
attributes("Inplenentation-Title": "G adle",
"I npl enent ati on- Ver si on": version)

}

task fooJdar(type: Jar) {
mani f est = project. mani fest {
f rom shar edMani f est

}

Y ou can merge other manifests into any Mani f est object. The other manifests might be either described by a
file path or, like in the example above, by areference to another Mani f est object.

Example 23.17. Separate MANIFEST .MF for a particular archive
buil d. gradl e

task barJar(type: Jar) {
mani fest {
attributes keyl: 'val uel
from shar edMani fest, 'src/config/basenanifest.txt'
from('src/config/javabasenani fest.txt',
"src/config/libbasemani fest.txt') {
eachEntry { details ->
if (details.baseValue != details. nmergeVal ue) {
detail s. val ue = baseVal ue
}
if (details.key == '"foo') {
det ai | s. excl ude()

}

Manifests are merged in the order they are declared by the f r omstatement. If the base manifest and the merged
manifest both define values for the same key, the merged manifest wins by default. Y ou can fully customize the
merge behavior by adding eachEnt ry actions in which you have access to a Mani f est Mer geDet ai | s
instance for each entry of the resulting manifest. The merge is not immediately triggered by the from statement.
It isdone lazily, either when generating the jar, or by callingwr i t eTo or ef f ecti veMani f est

Y ou can easily write a manifest to disk.

Example 23.18. Separate MANIFEST.MF for a particular archive

buil d. gradle

jar.mani fest.witeTo("$buil dDir/mymanifest.nf")

Page 165 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/java/archives/ManifestMergeDetails.html

23.15. Uploading

How to upload your archivesis described in Chapter 52, Publishing artifacts.

[9] The JUnit wiki contains a detailed description on how to work with JUnit categories:
https://github.com/junit-team/junit/wiki/Categories.

[10] The TestNG documentation contains more details about test groups:
http://testng.org/doc/documentati on-main.html#test-groups.

Page 166 of 448

https://github.com/junit-team/junit/wiki/Categories
http://testng.org/doc/documentation-main.html#test-groups

24

The Groovy Plugin

The Groovy plugin extends the Java plugin to add support for Groovy projects. It can deal with Groovy code,
mixed Groovy and Java code, and even pure Java code (although we don't necessarily recommend to use it for
the latter). The plugin supports joint compilation, which allows you to freely mix and match Groovy and Java
code, with dependencies in both directions. For example, a Groovy class can extend a Java class that in turn
extends a Groovy class. This makes it possible to use the best language for the job, and to rewrite any classin
the other language if needed.

24.1. Usage

To use the Groovy plugin, include the following in your build script:

Example 24.1. Using the Groovy plugin

bui I d. gradl e

apply plugin: 'groovy'

24.2. Tasks

The Groovy plugin adds the following tasks to the project.

Table 24.1. Groovy plugin - tasks

Task name Dependson Type Description

conpi | eG oovy conpi | eJava G oovyConpi | e Compiles production
Groovy source files.

conpi | eTest G oovy conpil eTestJava G oovyConpile Compilestest Groovy
sourcefiles.

conpi | eSour ceSet G oovynpi | eSour ceSet Ja@aoovyConpi |l e Compilesthe given source
set's Groovy sourcefiles.

gr oovydoc - G oovydoc Generates API
documentation for the
production Groovy source
files.

Page 167 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.javadoc.Groovydoc.html

The Groovy plugin adds the following dependencies to tasks added by the Java plugin.

Table 24.2. Groovy plugin - additional task dependencies

Task name Dependson
classes compileGroovy
testClasses compileTestGroovy

sour ceSet Classes compileSour ceSet Groovy

Figure 24.1. Groovy plugin - tasks

[processResources
compileGroovy

processTestResources
CompileTestGroovy . '

testClasses

classes

compileTestJava

24.3. Project layout

The Groovy plugin assumes the project layout shown in Table 24.3, “Groovy plugin - project layout”. All the
Groovy source directories can contain Groovy and Java code. The Java source directories may only contain
Java source code. [11] None of these directories need to exist or have anything in them; the Groovy plugin will
simply compile whatever it finds.

Page 168 of 448

Table 24.3. Groovy plugin - project layout

Directory Meaning
src/ main/java Production Java
source
src/ mai n/ resour ces Production
resources
src/ mai n/ gr oovy Production Groovy sources. May also contain Java
sources for joint compilation.
src/test/java Test Java source
src/test/resources Test resources
src/test/groovy Test Groovy sources. May also contain Java sources
for joint compilation.
src/ sourceSet/java Java source for the

given source set

src/ sourceSet/resources Resources for the
given source set

src/ sour ceSet/ groovy Groovy sourcesfor the given source set. May also
contain Java sources for joint compilation.

24.3.1. Changing the project layout

Just like the Java plugin, the Groovy plugin allows you to configure custom locations for Groovy production
and test sources.

Example 24.2. Custom Groovy sour ce layout
buil d. gradl e

sour ceSets {
mai n {
groovy {
srcDirs ['src/groovy']
}
}

test {

groovy {
srcDirs ['test/groovy']

Page 169 of 448

24.4. Dependency management

Because Gradl€e's build language is based on Groovy, and parts of Gradle are implemented in Groovy, Gradle
aready ships with a Groovy library (2.3.3 as of Gradle 2.0). Nevertheless, Groovy projects need to explicitly
declare a Groovy dependency. This dependency will then be used on compile and runtime class paths. It will
aso be used to get hold of the Groovy compiler and Groovydoc tool, respectively.

If Groovy is used for production code, the Groovy dependency should be added to the conpi | e configuration:

Example 24.3. Configuration of Groovy dependency
buil d. gradl e

repositories {
mavenCent ral ()

}

dependenci es {
conpi l e ' org. codehaus. groovy: groovy-all:2.3.6

}

If Groovy is only used for test code, the Groovy dependency should be added to the t est Conpi l e
configuration:

Example 24.4. Configuration of Groovy test dependency
buil d. gradl e

dependenci es {

t est Conpi |l e "org. codehaus. groovy: groovy: 2. 3. 6"

}

To use the Groovy library that ships with Gradle, declareal ocal Gr oovy() dependency. Note that different
Gradle versions ship with different Groovy versions; as such, using | ocal Gr oovy() is less safe then
declaring aregular Groovy dependency.

Example 24.5. Configuration of bundled Groovy dependency

buil d. gradl e

dependenci es {
conpi |l e | ocal G oovy()

}

The Groovy library doesn't necessarily have to come from a remote repository. It could also comefromalocal | i b
directory, perhaps checked in to source control:

Page 170 of 448

Example 24.6. Configuration of Groovy file dependency
buil d. gradl e
repositories {

flatDir { dirs 'Iib" }
}
dependenci es {

conpi | e nmodul e(' org. codehaus. groovy: groovy: 1. 6.0") {
dependency('asmasmal |l :2.2.3")

dependency('antlr:antlr:2.7.7")
dependency(' commons-cli:comons-cli:1.2")
nmodul e(' org. apache. ant:ant:1.9.3") {
dependenci es(' org. apache.ant:ant-junit:1.9.3@ar",
‘org. apache. ant: ant -1 auncher: 1. 9. 3")

The “nodul e” reference may be new to you. See Chapter 51, Dependency Management for more information
about this and other information about dependency management.

24.5. Automatic configuration of groovyClasspath

The Gr oovy Conpi | e and G oovydoc tasks consume Groovy code in two ways: on their cl asspat h, and
on their gr oovyC asspat h. The former is used to locate classes referenced by the source code, and will
typically contain the Groovy library along with other libraries. The latter is used to load and execute the Groovy
compiler and Groovydoc tool, respectively, and should only contain the Groovy library and its dependencies.

Unlessatask's gr oovyC asspat h is configured explicitly, the Groovy (base) plugin will try to infer it from
thetask'scl asspat h. Thisis done asfollows:

® |[fagroovy-all (-indy) Jarisfoundoncl asspat h, that jar will be added to gr oovyC asspat h.

® |fagroovy(-indy) jarisfoundoncl asspat h, and the project has at least one repository declared, a
corresponding gr oovy(- i ndy) repository dependency will be added to gr oovyC asspat h.

® Otherwise, execution of the task will fail with amessage saying that gr oovyC asspat h could not be
inferred.

Note that the “- i ndy” variation of each jar refersto the version with i nvokedynani ¢ support.

24.6. Convention properties

The Groovy plugin does not add any convention properties to the project.

24.7. Source set properties

The Groovy plugin adds the following convention properties to each source set in the project. You can use these
propertiesin your build script as though they were properties of the source set object (see 777?).

Page 171 of 448

Table 24.4. Groovy plugin - sour ce set properties

Property name Type Default value Description
groovy Sour ceDi r ect or ySet Not null The Groovy source files of this
(read-only) source set. Containsall . gr oovy

and . j ava filesfound in the
Groovy source directories, and
excludes all other types of files.

groovy.srcDirs Set<Fil e>. Canset [proj ect D r/ sThe soane/direoctovig$ containing
using anything described the Groovy source files of this
in Section 16.5, source set. May also contain Java
“Specifying a set of input source files for joint compilation.
files.

al | Groovy Fi | eTr ee (read-only) Not null All Groovy source files of this

source set. Contains only the . gr oovy
files found in the Groovy source
directories.

These properties are provided by a convention object of type Gr oovy Sour ceSet .
The Groovy plugin also modifies some source set properties:

Table 24.5. Groovy plugin - sour ce set properties

Property name Change
al | Java Addsall . j ava filesfound in the Groovy source directories.

al | Source Adds all source files found in the Groovy source directories.

24.8. GroovyCompile

The Groovy plugin addsa Gr oovyConpi | e task for each source set in the project. The task type extendsthe Jave
task (see Section 23.11, “CompileJava’). The Gr oovy Conpi | e task supports most configuration options of
the official Groovy compiler.

Page 172 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/SourceDirectorySet.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.GroovySourceSet.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.compile.GroovyCompile.html

Table 24.6. Groovy plugin - GroovyCompile properties

Task Property Type Default Value
cl asspath Fil eColl ection sourceSet . conpi | ed asspath
source Fi | eTr ee. Can set using anything sour ceSet . gr oovy

described in Section 16.5, “ Specifying a

set of input files'.
destinationDir File. sourceSet. out put. cl assesDi r
groovyC asspath FileColl ection gr oovy configuration if

non-empty; Groovy library found on
cl asspat h otherwise

[11] We are using the same conventions as introduced by Russel Winder's Gant tool (http://gant.codehaus.org).

Page 173 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/FileCollection.html
http://gant.codehaus.org

25

The Scala Plugin

The Scala plugin extends the Java plugin to add support for Scala projects. It can deal with Scala code, mixed
Scala and Java code, and even pure Java code (although we don't necessarily recommend to use it for the latter).
The plugin supports joint compilation, which allows you to freely mix and match Scala and Java code, with
dependencies in both directions. For example, a Scala class can extend a Java class that in turn extends a Scala
class. Thismakesit possible to use the best language for the job, and to rewrite any classin the other language if
needed.

25.1. Usage

To use the Scala plugin, include the following in your build script:

Example 25.1. Using the Scala plugin

buil d. gradl e

apply plugin: 'scala'

25.2. Tasks

The Scala plugin adds the following tasks to the project.

Table 25.1. Scala plugin - tasks

Task name Dependson Type Description
conpi | eScal a conpi | eJava Scal aConpi | e Compiles production Scala
source files.

conpi |l eTest Scala conpil eTestJava Scal aConpil e Compilestest Scala source
files.

conpi | eSour ceSet Scat@pi | eSour ceSet Jaswal aConpi |l e Compilesthe given source set's
Scala sourcefiles.

scal adoc - Scal aDoc Generates APl documentation
for the production Scala source
files.

The Scala plugin adds the following dependencies to tasks added by the Java plugin.

Page 174 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.scala.ScalaDoc.html

Table 25.2. Scala plugin - additional task dependencies

Task name Dependson
cl asses conpi | eScal a
test d asses conpi | eTest Scal a

sourceSet Cl asses conpi | eSour ceSet Scal a

Figure 25.1. Scala plugin - tasks

S
compileScala

scaladoc

processTestResources
compileTestScala I '

testClasses

classes

compileTestJava

25.3. Project layout

The Scala plugin assumes the project layout shown below. All the Scala source directories can contain Scala
and Java code. The Java source directories may only contain Java source code. None of these directories need
to exist or have anything in them; the Scala plugin will ssimply compile whatever it finds.

Table 25.3. Scala plugin - project layout

Directory Meaning
src/ main/java Production Java
source
src/ mai n/ resour ces Production
resources
src/ mai n/ scal a Production Scala sources. May also contain Java
sources for joint compilation.
src/test/java Test Java source
src/test/resources Test resources
src/test/scal a Test Scala sources. May also contain Java sources
for joint compilation.
src/ sourceSet/java Java source for the

given source set

src/ sourceSet/resources Resources for the
given source set

src/ sourceSet/scal a Scalasourcesfor the given source set. May also
contain Java sources for joint compilation.

Page 175 of 448

25.3.1. Changing the project layout

Just like the Java plugin, the Scala plugin allows you to configure custom locations for Scala production and test
sources.

Example 25.2. Custom Scala sour ce layout

buil d. gradl e

sourceSets {
mai n {
scal a {
srcDirs ['"src/scala']

['test/scal a']

25.4. Dependency management

Scala projects need to declare ascal a- | i br ary dependency. This dependency will then be used on compile

and runtime class paths. It will also be used to get hold of the Scala compiler and Scaladoc tool, respectively. [12
]

If Scala is used for production code, the scal a-1i brary dependency should be added to the conpi | e
configuration:

Example 25.3. Declaring a Scala dependency for production code

bui I d. gradl e

repositories {
mavenCentral ()

}

dependenci es {
conpile 'org.scal a-1ang: scal a-library:2.11. 1

}

If Scalais only used for test code, the scal a- 1 i br ary dependency should be added to the t est Conpi | e
configuration:

Page 176 of 448

Example 25.4. Declaring a Scala dependency for test code
buil d. gradl e

dependenci es {

testConpile "org.scal a-l ang: scal a-library:2.11. 1"

}

25.5. Automatic configuration of scalaClasspath

The Scal aConpi | e and Scal aDoc tasks consume Scala code in two ways. on their cl asspat h, and on
their scal aCl asspat h. The former is used to locate classes referenced by the source code, and will typically
contain scal a- | i br ary along with other libraries. The latter is used to load and execute the Scala compiler
and Scaladoc tool, respectively, and should only contain the scal a- conpi | er library and its dependencies.

Unlessatask's scal aCl asspat h is configured explicitly, the Scala (base) plugin will try to infer it from the
task'scl asspat h. Thisisdone asfollows:

* |[fascal a-1i brary Jarisfound on cl asspat h, and the project has at least one repository declared, a
corresponding scal a- conpi | er repository dependency will be added to scal aCl asspat h.

® Otherwise, execution of the task will fail with amessage saying that scal aCl asspat h could not be
inferred.

25.6. Convention properties

The Scala plugin does not add any convention properties to the project.

25.7. Source set properties

The Scala plugin adds the following convention properties to each source set in the project. Y ou can use these
propertiesin your build script as though they were properties of the source set object (see 777?).

Page 177 of 448

Table 25.4. Scala plugin - sour ce set properties

Property name Type Default value Description
scal a Sour ceDi r ect or ySet Not null The Scala source files of this
(read-only) source set. Contains all . scal a

and . j ava filesfoundin the
Scala source directories, and
excludes all other types of files.

scala.srcDirs Set<Fil e>. Canset [proj ect Di r/ sThe soaine/direatios s containing
using anything described the Scala source files of this
in Section 16.5, source set. May also contain Java
“Specifying a set of input source files for joint compilation.
files.

al | Scal a Fi | eTr ee (read-only) Not null All Scala sourcefiles of this

source set. Containsonly the . scal a
files found in the Scala source
directories.

These convention properties are provided by a convention object of type Scal aSour ceSet .
The Scala plugin also modifies some source set properties:

Table 25.5. Scala plugin - sour ce set properties

Property name Change
al | Java Addsall . j ava filesfound in the Scala source directories.

al | Source Adds all source files found in the Scala source directories.

25.8. Fast Scala Compiler

The Scala plugin includes support for fsc, the Fast Scala Compiler. f sc runsin a separate daemon process and
can speed up compilation significantly.

Example 25.5. Enabling the Fast Scala Compiler

bui I d. gradl e

conpi | eScal a {
scal aConpi | eOpti ons. useConpi | eDaenobn = true

/1 optionally specify host and port of the daenon:
scal aConpi | eOpt i ons. daenmonServer = "| ocal host: 4243"

Note that f sc expects to be restarted whenever the contents of its compile class path change. (It does detect
changes to the compile class path itself.) This makes it less suitable for multi-project builds.

Page 178 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/SourceDirectorySet.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.ScalaSourceSet.html
http://www.scala-lang.org/docu/files/tools/fsc.html

25.9. Compiling in external process

When scal aConpi | eOpti ons. fork isset totrue, compilation will take place in an external process.
The Ant based compiler (scal aConpi | eOpti ons. useAnt = true) will fork a new process for every
invocation of the Scal aConpi | e task, and does not fork by default. The Zinc based compiler (scal aConpi | eC
) will leverage the Gradle compiler daemon, and does so by defaullt.

Memory settings for the external process default to the defaults of the VM. To adjust memory settings,
configurethescal aComnpi | eOpti ons. f or KOpt i ons property as needed:

Example 25.6. Adjusting memory settings

buil d. gradl e

tasks. wi t hType(Scal aConpi |) {
confi gure(scal aConpi | eOpti ons. f orkOpti ons) {
menor yMaxi munti ze = ' 19’

jvmArgs = [' - XX: MaxPer nfSi ze=512m]

25.10. Incremental compilation

By compiling only classes whose source code has changed since the previous compilation, and classes affected
by these changes, incremental compilation can significantly reduce Scala compilation time. It is particularly
effective when frequently compiling small code increments, as is often done at devel opment time.

The Scala plugin now supports incremental compilation by integrating with Zinc, a standalone version of sbt's
incremental Scala compiler. To switch the Scal aConpi | e task from the default Ant based compiler to the
new Zinc based compiler, set scal aConpi | eQpt i ons. useAnt tof al se:

Example 25.7. Activating the Zinc based compiler

buil d. gradl e

tasks. wi t hType(Scal aConpi |) {
scal aConpi | eOpti ons. useAnt = fal se

}

Except where noted in the API documentation, the Zinc based compiler supports exactly the same configuration
options as the Ant based compiler. Note, however, that the Zinc compiler requires Java 6 or higher to run. This
means that Gradle itself hasto be run with Java 6 or higher.

The Scala plugin adds a configuration named zi nc to resolve the Zinc library and its dependencies. Gradle will
have a default version of the Zinc library, but if you want to override the Zinc version that Gradle uses, add an
explicit dependency like “com t ypesafe. zi nc: zi nc: 0. 1. 4" . Regardless of which Zinc version is
used, Zinc will always use the Scala compiler found on the scal aTool s configuration.

Just like Gradle's Ant based compiler, the Zinc based compiler supports joint compilation of Java and Scala

Page 179 of 448

https://github.com/typesafehub/zinc
https://github.com/harrah/xsbt
http://gradle.org/docs/current/dsl/org.gradle.api.tasks.scala.ScalaCompile.html

code. By default, all Java and Scala code under sr ¢/ mai n/ scal a will participate in joint compilation. With
the Zinc based compiler, even Java code will be compiled incrementally.

Incremental compilation requires dependency analysis of the source code. The results of this analysis are stored
inthe file designated by scal aConpi | eOpti ons. i ncrenment al Opti ons. anal ysi sFi | e (which has
a sensible default). In a multi-project build, analysis files are passed on to downstream Scal aConpi | e tasks
to enable incremental compilation across project boundaries. For Scal aConpi | e tasks added by the Scala
plugin, no configuration is necessary to make this work. For other Scal aConpi | e tasks that you might add,
the property scal aConpil eOpti ons. i ncrenental Opti ons. publi shedCode needs to be
configured to point to the classes folder or Jar archive by which the code is passed on to compile class paths of
downstream Scal aConpi | e tasks. Note that if publ i shedCode is not set correctly, downstream tasks may
not recompile code affected by upstream changes, leading to incorrect compilation results.

Due to the overhead of dependency analysis, a clean compilation or a compilation after a larger code change
may take longer than with the Ant based compiler. For CI builds and release builds, we currently recommend to
use the Ant based compiler.

Note that Zinc's Nailgun based daemon mode is not supported. Instead, we plan to enhance Gradl€'s own
compiler daemon to stay alive across Gradle invocations, reusing the same Scala compiler. This is expected to
yield another significant speedup for Scala compilation.

25.11. Eclipse Integration

When the Eclipse plugin encounters a Scala project, it adds additional configuration to make the project work
with Scala IDE out of the box. Specifically, the plugin adds a Scala nature and dependency container.

25.12. IntelliJ IDEA Integration

When the IDEA plugin encounters a Scala project, it adds additional configuration to make the project work
with IDEA out of the box. Specificaly, the plugin adds a Scala facet and a Scala compiler library that matches
the Scala version on the project's class path.

[12] See Section 25.5, “ Automatic configuration of scalaClasspath”.

Page 180 of 448

26

The War Plugin

The War plugin extends the Java plugin to add support for assembling web application WAR files. It disables
the default JAR archive generation of the Java plugin and adds a default WAR archive task.

26.1. Usage

To use the War plugin, include the following in your build script:

Example 26.1. Using the War plugin

bui I d. gradl e

apply plugin: '"war'

26.2. Tasks

The War plugin adds the following tasks to the project.

Table26.1. War plugin - tasks

Task name Dependson Type Description

war conpil e War Assembles the application WAR file.

The War plugin adds the following dependencies to tasks added by the Java plugin.

Table 26.2. War plugin - additional task dependencies

Task name Dependson

assemble war

Figure 26.1. War plugin - tasks

classes H war]4—[

assemble

Page 181 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.War.html

26.3. Project layout

Table 26.3. War plugin - project layout

Directory Meaning

src/ mai n/ webapp Web application sources

26.4. Dependency management

The War plugin adds two dependency configurations named pr ovi dedConpi | e and pr ovi dedRunt i ne.
Those two configurations have the same scope as the respective conpi | e and runt i me configurations,
except that they are not added to the WAR archive. It isimportant to note that those pr ovi ded configurations
work transitively. Let's say you add cormons- ht t pcl i ent: commons- htt pcli ent: 3. 0 to any of the
provided configurations. This dependency has a dependency on conmons- codec. Because this is a
“provided” configuration, this means that neither of these dependencies will be added to your WAR, even if the con
library is an explicit dependency of your conpi | e configuration. If you don't want this transitive behavior,
simply declare your pr ovi ded dependencieslike commons- htt pcl i ent: commons-httpclient: 3. 0@ ¢

26.5. Convention properties

Table 26.4. War plugin - directory properties

Property name Type Default value Description

webAppDi r Nanme String src/ mai n/ webapp The name of the web application source
directory, relative to the project directory.

webAppDi r File proj ect Di r/ webAppDImeNaerapplication source directory.
(read-only)

These properties are provided by aWar Pl ugi nConvent i on convention object.

26.6. War

The default behavior of the War task is to copy the content of sr ¢/ mai n/ webapp to the root of the archive.
Your webapp directory may of course contain a EB- | NF sub-directory, which may contain aweb. xm file.
Your compiled classes are compiled to VIEB- | NF/ cl asses. All the dependencies of the runti ne (13]
configuration are copied to VEB- | NF/ | i b.

TheWar classin the APl documentation has additional useful information.

Page 182 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.WarPluginConvention.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.War.html

26.7. Customizing

Here is an example with the most important customization options:

Example 26.2. Customization of war plugin
buil d. gradl e

configurations {
nor eLi bs

}

repositories {
flatDir { dirs "lib" }
mavenCent ral ()

}

dependenci es {

conpi |l e nmodul e(": conpile:1.0") {
dependency ":conpile-transitive-1.0@ ar"
dependency ": provi dedConpile-transitive:1.0@ar"

}

provi dedConpi |l e "j avax. servl et: servl et-api:2.5"

provi dedConpi | e nmodul e(": provi dedConpi | e: 1. 0") {
dependency ": provi dedConpile-transitive:1.0@ar"

}

runtime ":runtine: 1. 0"

provi dedRuntine ":provi dedRuntine: 1. 0@ ar"

testConpile "junit:junit:4. 11"

nmor eLi bs ": ot herLib:1.0"

{

from'src/rootContent' // adds a file-set to the root of the archive

weblnf { from'src/additional Wbinf' } // adds a file-set to the WEB-INF dir.
cl asspath fileTree(' additional Libs') // adds a file-set to the WEB-INF/Ilib dir]
cl asspath configurations.noreLibs // adds a configuration to the WEB-INF/|ib di
webXm = file('src/someWeb.xm ') // copies a file to WEB-|NF/ web. xm

Of course one can configure the different file-sets with a closure to define excludes and includes.

[13] Ther unt i me configuration extends the conpi | e configuration.

Page 183 of 448

27

The Ear Plugin

The Ear plugin adds support for assembling web application EAR files. It adds a default EAR archive task. It
doesn't require the Java plugin, but for projects that also use the Java plugin it disables the default JAR archive
generation.

27.1. Usage

To use the Ear plugin, include the following in your build script:

Example 27.1. Using the Ear plugin

buil d. gradl e

apply plugin: 'ear'

27.2. Tasks

The Ear plugin adds the following tasks to the project.

Table 27.1. Ear plugin - tasks

Task Dependson Type Description

name

ear compi | e (only if the Java pluginisaso Ear Assembles the application EAR
applied) file

The Ear plugin adds the following dependencies to tasks added by the base plugin.

Table 27.2. Ear plugin - additional task dependencies

Task name Dependson

assemble ear

Page 184 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ear.Ear.html

27.3. Project layout

Table 27.3. Ear plugin - project layout

Directory M eaning

src/ mai n/ application Earresources, such asaMETA-INF directory

27.4. Dependency management

The Ear plugin adds two dependency configurations: depl oy and ear | i b. All dependencies in the depl oy
configuration are placed in the root of the EAR archive, and are not transitive. All dependenciesintheearl i b
configuration are placed in the 'lib' directory in the EAR archive and are transitive.

27.5. Convention properties

Table 27.4. Ear plugin - directory properties

Property name Type
appDi r Nare String
['i bDi r Nane String

depl oynent Descri pt or org. gradl e. pl ugi ns.
ear . descriptor.
Depl oyment Descri pt or

Default value

src/ mai n/ application

lib

A deployment descriptor with

Description

The name of
directory, re
directory.

The name of
the generater

Metadata to

sensible defaults named appl i c alesaiptorril

These properties are provided by aEar Pl ugi nConvent i on convention object.

27.6. Ear

. If thisfile¢
then the exis
be used and
configuratiol
will beignot

The default behavior of the Ear task is to copy the content of sr ¢/ mai n/ appl i cati on to the root of the
archive. If your appl i cati on directory doesn't contain a META- | NF/ appl i cati on. xm deployment

descriptor then one will be generated for you.

The Ear classin the APl documentation has additional useful information.

Page 185 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ear.EarPluginConvention.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ear.Ear.html

27.7. Customizing

Here is an example with the most important customization options:

Example 27.2. Customization of ear plugin

buil d. gradl e

apply plugin: 'ear’
apply plugin: 'java'

repositories { mavenCentral () }

dependenci es {
/1l The foll owi ng dependencies will be the ear nodul es and
/1 will be placed in the ear root
depl oy project (' :war')

/1 The foll ow ng dependencies will becone ear |libs and wll
/1 be placed in a dir configured via the |ibDirName property
earlib group: 'log4]', nanme: 'log4]', version: '1.2.15, ext: 'jar'

{

appDi r Name ' src/main/app’ [/ use application nmetadata found in this folder
/'l put dependent libraries into APP-INF/Iib inside the generated EAR
I'i bDi r Name ' APP- | NF/ | i b’
depl oyment Descriptor { // customentries for application.xm:
fileName = "application.xm" // sanme as the default val ue
version = "6" [// same as the default val ue
appl i cati onName = "cust onear"
initializelnOrder = true
di spl ayNane = "Custom Ear" // defaults to project.nanme
/1l defaults to project.description if not set
description = "My custoni zed EAR for the G adl e docunentation”
l'ibraryDirectory = "APP-INF/lib" // not needed, above |ibDirNanme setting {
nmodul e("my.jar", "java") [/ won't deploy as my.jar isn't depl oy dependenc
webModul e("nmy.war", "/") [/ won't deploy as my.war isn't depl oy dependenc
securityRol e "adm n"
securityRol e "superadm n"
withXm { provider -> // add a custom node to the XM
provi der. asNode() . appendNode(" dat a- sour ce", "ny/datal/source")

Y ou can also use customization options that the Ear task provides, such asf r omand net al nf .

27.8. Using custom descriptor file

You may already have appropriate settings in a appl i cati on. xm file and want to use that instead of
configuring the ear . depl oynent Descr i pt or section of the build script. To accommodate that goal, place
the META- | NF/ appl i cati on. xm in the right place inside your source folders (see the appDi r Nane
property). The file contents will be used and the explicit configuration in the ear . depl oynent Descri pt or
will beignored.

Page 186 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ear.Ear.html

28

The Jetty Plugin

The Jetty plugin extends the War plugin to add tasks which allow you to deploy your web application to a Jetty

web container embedded in the build.

28.1. Usage

To use the Jetty plugin, include the following in your build script:

Example 28.1. Using the Jetty plugin

bui I d. gradl e

apply plugin: "jetty'

28.2. Tasks

The Jetty plugin defines the following tasks:

Table 28.1. Jetty plugin - tasks

Task name Depends Type
on
jettyRun conpile JettyRun
j ett yRunWar war Jet t yRunWar
jettyStop - JettyStop

Description

Starts a Jetty instance and deploys the exploded web
application to it.

Starts a Jetty instance and deploys the WAR to it.

Stops the Jetty instance.

Page 187 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.jetty.JettyRun.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.jetty.JettyRunWar.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.jetty.JettyStop.html

Figure 28.1. Jetty plugin - tasks

jettyRun]

war]4—[jettyRunWar

[classes

[jettyStop]

28.3. Project layout

The Jetty plugin uses the same layout as the War plugin.

28.4. Dependency management

The Jetty plugin does not define any dependency configurations.

28.5. Convention properties

The Jetty plugin defines the following convention properties:

Table 28.2. Jetty plugin - properties

Property name Type Default value Description

contextPath String WAR file base The application deployment location within the

name Jetty container.
ht t pPor t I nt eger 8080 The TCP port which Jetty should listen for HTTP
requests on.
st opPor t I nt eger nul | The TCP port which Jetty should listen for admin
requests on.
st opKey String nul | The key to pass to Jetty when requesting it to stop.

These properties are provided by aJet t yPI ugi nConvent i on convention object.

Page 188 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.jetty.JettyPluginConvention.html

29

The Checkstyle Plugin

The Checkstyle plugin performs quality checks on your project's Java source files using Checkstyle and
generates reports from these checks.

29.1. Usage

To use the Checkstyle plugin, include the following in your build script:

Example 29.1. Using the Checkstyle plugin

bui I d. gradl e

apply plugin: 'checkstyle'

The plugin adds a number of tasks to the project that perform the quality checks. Y ou can execute the checks by
running gr adl e check.

29.2. Tasks

The Checkstyle plugin adds the following tasks to the project:

Table 29.1. Checkstyle plugin - tasks

Task name Dependson Type Description

checkstyl eMain cl asses Checkstyl e RunsCheckstyle against the production
Java sourcefiles.

checkstyl eTest test d asses Checkstyl e RunsCheckstyle against the test Java
sourcefiles.

checkstyl eSour ceSedur ceSet Cl ass€&heckstyl e Runs Checkstyle against the given source

set's Java source files.

The Checkstyle plugin adds the following dependencies to tasks defined by the Java plugin.

Page 189 of 448

http://checkstyle.sourceforge.net/index.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.Checkstyle.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.Checkstyle.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.Checkstyle.html

Table 29.2. Checkstyle plugin - additional task dependencies

Task name Dependson

check All Checkstyletasks, including checkst yl eMai n and checkst yl eTest .

29.3. Project layout

The Checkstyle plugin expects the following project layout:

Table 29.3. Checkstyle plugin - project layout

File M eaning

confi g/ checkstyl e/ checkstyl e. xm Checkstyle configuration file

29.4. Dependency management

The Checkstyle plugin adds the following dependency configurations:

Table 29.4. Checkstyle plugin - dependency configurations

Name M eaning

checkstyl e The Checkstyle librariesto use

29.5. Configuration

Seethe Checkst yl eExt ensi on classin the API documentation.

Page 190 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.CheckstyleExtension.html

30

The CodeNarc Plugin

The CodeNarc plugin performs quality checks on your project's Groovy source files using CodeNarc and

generates reports from these checks.

30.1. Usage

To use the CodeNarc plugin, include the following in your build script:

Example 30.1. Using the CodeNar ¢ plugin

bui I d. gradl e

apply plugin: 'codenarc'

The plugin adds a number of tasks to the project that perform the quality checks. Y ou can execute the checks by

running gr adl e check.

30.2. Tasks

The CodeNarc plugin adds the following tasks to the project:

Table 30.1. CodeNarc plugin - tasks

Task name Depends Type

on
codenarcMai n - CodeNar c
codenar cTest - CodeNar c
codenar cSour ceSet- CodeNar c

Description

Runs CodeNarc against the production Groovy
source files.

Runs CodeNarc against the test Groovy source files.

Runs CodeNarc against the given source set's
Groovy source files.

The CodeNarc plugin adds the following dependencies to tasks defined by the Groovy plugin.

Page 191 of 448

http://codenarc.sourceforge.net/index.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.CodeNarc.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.CodeNarc.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.CodeNarc.html

Table 30.2. CodeNar ¢ plugin - additional task dependencies

Task name Dependson

check All CodeNarc tasks, including codenar cMai n and codenar cTest .

30.3. Project layout

The CodeNarc plugin expects the following project layout:

Table 30.3. CodeNar ¢ plugin - project layout

File Meaning

confi g/ codenar c/ codenar c. xmi CodeNarc configuration file

30.4. Dependency management

The CodeNarc plugin adds the following dependency configurations:

Table 30.4. CodeNar ¢ plugin - dependency configurations

Name M eaning

codenar c The CodeNarc libraries to use

30.5. Configuration

See the CodeNar cExt ensi on classin the APl documentation.

Page 192 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.CodeNarcExtension.html

31

The FindBugs Plugin

The FindBugs plugin performs quality checks on your project's Java source files using FindBugs and generates

reports from these checks.

31.1. Usage

To use the FindBugs plugin, include the following in your build script:

Example 31.1. Using the FindBugs plugin

bui I d. gradl e

apply plugin: 'findbugs'

The plugin adds a number of tasks to the project that perform the quality checks. Y ou can execute the checks by

running gr adl e check.

31.2. Tasks

The FindBugs plugin adds the following tasks to the project:

Table 31.1. FindBugs plugin - tasks

Task name Depends on Type

fi ndbugsMai n cl asses Fi ndBugs

fi ndbugsTest test d asses Fi ndBugs

fi ndbugsSour ceSesour ceSet Cl asseBi ndBugs

Description

Runs FindBugs against the production Java
source files.

Runs FindBugs against the test Java source
files.

Runs FindBugs against the given source set's
Java sourcefiles.

The FindBugs plugin adds the following dependencies to tasks defined by the Java plugin.

Page 193 of 448

http://findbugs.sourceforge.net
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.FindBugs.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.FindBugs.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.FindBugs.html

Table 31.2. FindBugs plugin - additional task dependencies

Task name Dependson

check All FindBugs tasks, including f i ndbugsMai n andf i ndbugsTest .

31.3. Dependency management

The FindBugs plugin adds the following dependency configurations:

Table 31.3. FindBugs plugin - dependency configurations

Name Meaning

fi ndbugs The FindBugs libraries to use

31.4. Configuration

See the Fi ndBugsExt ensi on classin the APl documentation.

Page 194 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.FindBugsExtension.html

32

The JDepend Plugin

The JDepend plugin performs quality checks on your project's source files using JDepend and generates reports
from these checks.

32.1. Usage

To use the JDepend plugin, include the following in your build script:

Example 32.1. Using the JDepend plugin

bui I d. gradl e

apply plugin: 'jdepend

The plugin adds a number of tasks to the project that perform the quality checks. Y ou can execute the checks by
running gr adl e check.

32.2. Tasks

The JDepend plugin adds the following tasks to the project:

Table 32.1. JDepend plugin - tasks

Task name Depends on Type Description

j dependMai n cl asses JDepend RunsJDepend against the production Java
source files.

j dependTest test d asses JDepend RunsJDepend against the test Java source files.

j dependSour ceSetsour ceSet Cl asseslDepend Runs JDepend against the given source set's
Java sourcefiles.

The JDepend plugin adds the following dependencies to tasks defined by the Java plugin.

Table 32.2. IDepend plugin - additional task dependencies

Task name Dependson
check All JDepend tasks, including j dependMai n and j dependTest .

Page 195 of 448

http://clarkware.com/software/JDepend.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.JDepend.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.JDepend.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.JDepend.html

32.3. Dependency management

The JDepend plugin adds the following dependency configurations:

Table 32.3. JDepend plugin - dependency configurations

Name Meaning

j depend The JDepend libraries to use

32.4. Configuration

See the JDependExt ensi on classin the APl documentation.

Page 196 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.JDependExtension.html

33

The PMD Plugin

The PMD plugin performs quality checks on your project's Java source files using PMD and generates reports
from these checks.

33.1. Usage

To use the PMD plugin, include the following in your build script:

Example 33.1. Using the PM D plugin

bui I d. gradl e
apply plugin: 'pnd

The plugin adds a number of tasks to the project that perform the quality checks. Y ou can execute the checks by
running gr adl e check.

33.2. Tasks

The PMD plugin adds the following tasks to the project:

Table 33.1. PMD plugin - tasks

Task name Dependson Type Description

prmdMai n - Prd Runs PMD against the production Java source files.
pmdTest - Prrd Runs PMD against the test Java source files.

prmdSour ceSet - Prd Runs PMD against the given source set's Java source files.

The PMD plugin adds the following dependencies to tasks defined by the Java plugin.

Table 33.2. PMD plugin - additional task dependencies

Task name Dependson

check All PMD tasks, including prdMai n and pndTest .

Page 197 of 448

http://pmd.sourceforge.net
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.Pmd.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.Pmd.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.Pmd.html

33.3. Dependency management

The PMD plugin adds the following dependency configurations:

Table 33.3. PM D plugin - dependency configur ations

Name Meaning

prmd The PMD librariesto use

33.4. Configuration

See the PmrdExt ensi on classin the APl documentation.

Page 198 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.PmdExtension.html

34

The JaCoCo Plugin

The JaCoCo plugin is currently incubating. Please be aware that the DSL and other configuration may
changein later Gradle versions.

The JaCoCo plugin provides code coverage metrics for Java code viaintegration with JaCoCo.

34.1. Getting Started

To get started, apply the JaCoCo plugin to the project you want to cal culate code coverage for.

Example 34.1. Applying the JaCoCo plugin

bui I d. gradl e
apply plugin: "jacoco"

If the Java plugin is also applied to your project, a new task named j acocoTest Report is created that
depends on the t est task. The report is available at $bui | dDi r / report s/ j acoco/ t est . By default, a
HTML report is generated.

34.2. Configuring the JaCoCo Plugin

The JaCoCo plugin adds a project extension named j acoco of type JacocoPl ugi nExt ensi on, which
alows configuring defaults for JaCoCo usage in your build.

Example 34.2. Configuring JaCoCo plugin settings

bui I d. gradl e

jacoco {
tool Version = "0.7.1.201405082137"

reportsDir = file("$buil dDir/customlacocoReportDir")

Page 199 of 448

http://www.eclemma.org/jacoco/
http://www.gradle.org/docs/2.3/dsl/org.gradle.testing.jacoco.plugins.JacocoPluginExtension.html

Table 34.1. Gradle defaultsfor JaCoCo properties

Property Gradle default

reportsDir “$bui | dDi r /reports/jacoco”

34.3. JaCoCo Report configuration

The JacocoReport task can be used to generate code coverage reportsin different formats. It implements the
standard Gradle type Repor t i ng and exposes areport container of type JacocoReport sCont ai ner.

Example 34.3. Configuring test task

bui I d. gradl e

j acocoTest Report {
reports {
xm . enabl ed fal se
csv. enabl ed fal se

htm . destination "${buildD r}/jacocoH m"

._EI 86 quickstart
t-'l quickstart

| quickstart

quickstart

Element Missed Instructions~ Cov. Missed Branches+ Cov.” Missed Cxty Missed
i org.gradle 100% n/a 0 5 0
Total 0of17 100% Oof0 n/a 0 5 1]

34.4. JaCoCo specific task configuration

The JaCoCo plugin adds a JacocoTaskExt ensi on extension to all tasks of type Test . This extension
allows the configuration of the JaCoCo specific properties of the test task.

Page 200 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.reporting.Reporting.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/testing/jacoco/tasks/JacocoReportsContainer.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.testing.jacoco.plugins.JacocoTaskExtension.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.testing.Test.html

Example 34.4. Configuring test task

bui I d. gradl e

test {
jacoco {

append = fal se

destinationFile = file("$buildDir/jacoco/jacocoTest.exec")
classDunpFile = file("$buildDir/jacoco/cl asspat hdunps")

Table 34.2. Default values of the JaCoCo Task extension

Property Gradle default
enabled true

destPath $bui | dDi r /jacoco
append true

includes 11

excludes (1

excludeClassL oaders (1

sessionld aut o- gener at ed
dumpOnExit true

output CQut put . FI LE
address -

port -

classDumpPath -

jmx fal se

While all tasks of type Test are automatically enhanced to provide coverage information when the j ava
plugin has been applied, any task that implements JavaFor kOpt i ons can be enhanced by the JaCoCo
plugin. That is, any task that forks Java processes can be used to generate coverage information.

For example you can configure your build to generate code coverage using the appl i cat i on plugin.

Page 201 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/process/JavaForkOptions.html

Example 34.5. Using application plugin to gener ate code cover age data
buil d. gradl e

apply plugin: "application”
apply plugin: "jacoco"

mai nCl assNanme = "org. gradl e. M\yMai n"

jacoco {

appl yTo run
}

task applicati onCodeCover ageReport (type: JacocoReport){
executi onbData run
sourceSet s sourceSets. nain

Note: The code for this example can be found at sanpl es/ t esti ng/j acoco/ applicati on inthe
‘-al’ distribution of Gradle.

Example 34.6. Coveragereports generated by applicationCodeCoverageReport
Build layout

appl i cation/
bui | d/
j acoco/

run. exec
reports/jacoco/ appl i cati onCodeCover ageReport/htm /
i ndex. ht n

34.5. Tasks

For projects that also apply the Java Plugin, The JaCoCo plugin automatically adds the following tasks:

Table 34.3. JaCoCo plugin - tasks

Task name Depends Type Description
on
j acocoTest Report - JacocoReport Generates code coverage report for the test
task.

34.6. Dependency management

The JaCoCo plugin adds the following dependency configurations:

Page 202 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html

Table 34.4. JaCoCo plugin - dependency configurations

Name Meaning
j acocoAnt The JaCoCo Ant library used for running the JacocoReport and JacocoMer ge
tasks.

j acocoAgent The JaCoCo agent library used for instrumenting the code under test.

Page 203 of 448

35

The Sonar Plugin

You may wish to use the new Sonar Runner Plugin instead of this plugin. In particular, only the Sonar
Runner plugin supports Sonar 3.4 and higher.

The Sonar plugin provides integration with Sonar, a web-based platform for monitoring code quality. The
plugin adds a sonar Anal yze task that analyzes the project to which the plugin is applied, as well as its
subprojects. The results are stored in the Sonar database. The plugin is based on the Sonar Runner and requires
Sonar 2.11 or higher.

The sonar Anal yze task is a standalone task that needs to be executed explicitly and doesn't depend on any
other tasks. Apart from source code, the task also analyzes class files and test result files (if available). For best
results, it is therefore recommended to run a full build before the analysis. In atypical setup, analysis would be
performed once per day on a build server.

35.1. Usage

At aminimum, the Sonar plugin has to be applied to the project.

Example 35.1. Applying the Sonar plugin

bui I d. gradl e

apply plugin: "sonar"

Unless Sonar is run locally and with default settings, it is necessary to configure connection settings for the
Sonar server and database.

Page 204 of 448

http://www.sonarsource.org
http://docs.codehaus.org/display/SONAR/Analyzing+with+Sonar+Runner

Example 35.2. Configuring Sonar connection settings
buil d. gradl e

sonar {
server {
url = "http://ny.server. cont

}

dat abase {

url = "jdbc:nysql://ny.server.conl sonar"
driverC assNanme = "com nysql .| dbc. Driver"
usernane = "Fred Flintstone”

password = "very clever"

Alternatively, some or all connection settings can be set from the command line (see Section 35.6, “ Configuring
Sonar Settings from the Command Line”).

Project settings determine how the project is going to be analyzed. The default configuration works well for
analyzing standard Java projects and can be customized in many ways.
Example 35.3. Configuring Sonar project settings
buil d. gradl e
sonar {

project {
coberturaReportPath = file("$buil dDi r/cobertura.xm")

}

The sonar, server, dat abase, and pr oj ect blocks in the examples above configure objects of type
Sonar Root Mbdel , Sonar Ser ver, Sonar Dat abase, and Sonar Pr oj ect , respectively. See their AP
documentation for further information.

35.2. Analyzing Multi-Project Builds

The Sonar plugin is capable of analyzing a whole project hierarchy at once. This yields a hierarchical view in
the Sonar web interface with aggregated metrics and the ability to drill down into subprojects. It is also faster
than analyzing each project separately.

To analyze a project hierarchy, the Sonar plugin needs to be applied to the top-most project of the hierarchy.
Typically (but not necessarily) this will be the root project. The sonar block in that project configures an
object of type Sonar Root Model . It holds al global configuration, most importantly server and database
connection settings.

Page 205 of 448

http://www.gradle.org/docs/2.3/groovydoc/org/gradle/api/plugins/sonar/model/SonarRootModel.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/api/plugins/sonar/model/SonarRootModel.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/api/plugins/sonar/model/SonarServer.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/api/plugins/sonar/model/SonarDatabase.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/api/plugins/sonar/model/SonarProject.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/api/plugins/sonar/model/SonarRootModel.html

Example 35.4. Glaobal configuration in a multi-project build

bui I d. gradl e

apply plugin: "sonar"

sonar {

server {
url = "http://ny.server.cont

}

dat abase {
url = "jdbc:nysql://ny.server.conl sonar"
dri verCl assName = "com nysql . j dbc. Driver"
usernane = "Fred Flintstone"
password = "very clever"

Each project in the hierarchy has its own project configuration. Common values can be set from a parent build
script.

Example 35.5. Common project configuration in a multi-project build

bui I d. gradl e

subproj ects {
sonar {
project {
sour ceEncodi ng = " UTF- 8"

Thesonar block in asubproject configures an object of type Sonar Pr oj ect Model .

Projects can also be configured individually. For example, setting the ski p property tot r ue prevents a project
(and its subprojects) from being analyzed. Skipped projects will not be displayed in the Sonar web interface.
Example 35.6. Individual project configuration in a multi-project build
bui I d. gradl e

project(":projectl") {

sonar {
project {

skip = true

Another typical per-project configuration is the programming language to be analyzed. Note that Sonar can only
analyze one language per project.

Page 206 of 448

http://www.gradle.org/docs/2.3/groovydoc/org/gradle/api/plugins/sonar/model/SonarProjectModel.html

Example 35.7. Configuring the language to be analyzed

bui I d. gradl e

project (":project2") {
sonar {
project {

| anguage = "groovy"

When setting only a single property at atime, the equivalent property syntax is more succinct:

Example 35.8. Using property syntax

buil d. gradl e

proj ect (":project2").sonar.project.|anguage = "groovy"

35.3. Analyzing Custom Source Sets

By default, the Sonar plugin will analyze the production sources in the mai n source set and the test sourcesin
thet est source set. This works independent of the project's source directory layout. Additional source sets can
be added as needed.

Example 35.9. Analyzing custom sour ce sets

buil d. gradl e

sonar . proj ect {
sourceDirs += sourceSets.custom al | Source. srcDirs

testDirs += sourceSets.integTest.all Source.srcDirs

35.4. Analyzing languages other than Java

To analyze code written in alanguage other than Java, install the corresponding Sonar plugin, and set sonar . pr oj
accordingly:

Example 35.10. Analyzing languages other than Java

buil d. gradl e

sonar . proj ect {

| anguage = "grvy" // set |anguage to G oovy

}

As of Sonar 3.4, only one language per project can be analyzed. Y ou can, however, set a different language for
each project in amulti-project build.

Page 207 of 448

http://www.sonarsource.com/products/plugins/languages/

35.5. Setting Custom Sonar Properties

Eventually, most configuration is passed to the Sonar code analyzer in the form of key-value pairs known as
Sonar properties. The Sonar Pr operty annotations in the APl documentation show how properties of the
plugin's object model get mapped to the corresponding Sonar properties. The Sonar plugin offers hooks to
post-process Sonar properties before they get passed to the code analyzer. The same hooks can be used to add
additional properties which aren't covered by the plugin's object model.

For global Sonar properties, usethewi t h@ obal Pr opert i es hook on Sonar Root Model :

Example 35.11. Setting custom global properties

buil d. gradl e

sonar. w t h@ obal Properties { props ->
props["sone. gl obal . property"] = "sone val ue"
/'l non-String values are automatically converted to Strings

props["ot her. gl obal . property"] = ["foo0", "bar", "baz"]

For per-project Sonar properties, usethewi t hPr oj ect Properti es hook on Sonar Pr oj ect :

Example 35.12. Setting custom pr oject properties
buil d. gradle

sonar . proj ect.w t hProj ect Properties { props ->
props["sone. proj ect. property"] = "some val ue"

/'l non-String values are automatically converted to Strings
props["other.project.property"] = ["foo", "bar", "baz"]

A list of available Sonar properties can be found in the Sonar documentation. Note that for most of these
properties, the Sonar plugin's object model has an equivalent property, and it isn't necessary to use a
wi t hd obal Properties or wi t hProj ect Properti es hook. For configuring a third-party Sonar
plugin, consult the plugin's documentation.

35.6. Configuring Sonar Settings from the
Command Line

The following properties can alternatively be set from the command line, as task parameters of the sonar Anal yze
task. A task parameter will override any corresponding value set in the build script.

® server.url

® dat abase. url

® dat abase. dri ver d assNane
® dat abase. user nane

® dat abase. password

Page 208 of 448

http://www.gradle.org/docs/2.3/groovydoc/org/gradle/api/plugins/sonar/model/SonarProperty.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/api/plugins/sonar/model/SonarRootModel.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/api/plugins/sonar/model/SonarProject.html
http://docs.codehaus.org/display/SONAR/Analysis+Parameters

®* showsql

® showSql Resul ts
® verbose

®* forceAnal ysis

Hereis acomplete example:

gradl e sonar Anal yze --server.url =http://sonar. myconpany.com

- -dat abase. passwor d=nyPassword --verbose

If you need to set other properties from the command line, you can use system properties to do so:
Example 35.13. Implementing custom command line properties

buil d. gradl e

sonar . proj ect {

| anguage = System get Property("sonar.|anguage", "java")

}

However, keep in mind that it is usually best to keep configuration in the build script and under source control.

35.7. Tasks

The Sonar plugin adds the following tasks to the project.

Table 35.1. Sonar plugin - tasks

Task name Depends Type Description
on
sonar Anal yze - Sonar Anal yze Analyzesaproject hierarchy and stores the results
in the Sonar database.

Page 209 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.sonar.SonarAnalyze.html

36

The Sonar Runner Plugin

The Sonar Runner plugin is currently incubating. Please be aware that the DSL and other configuration
may changein later Gradle versions.

It isintended that this plugin will replace the older Sonar Plugin in afuture Gradle version.

The Sonar Runner plugin provides integration with Sonar, a web-based platform for monitoring code quality. It
is based on the Sonar Runner, a Sonar client component that analyzes source code and build outputs, and stores
all collected information in the Sonar database. Compared to using the standalone Sonar Runner, the Sonar
Runner plugin offers the following benefits:

Automatic provisioning of Sonar Runner
The ability to execute the Sonar Runner via a regular Gradle task makes it available anywhere Gradle is
available (developer build, Cl server, etc.), without the need to manually download, setup, and maintain a
Sonar Runner installation.

Dynamic configuration from Gradle build scripts
All of Gradl€e's scripting features can be leveraged to configure Sonar Runner as needed.

Extensive configuration defaults
Gradle already has much of the information needed for Sonar Runner to successfully analyze a project. By
preconfiguring the Sonar Runner based on that information, the need for manual configuration is reduced
significantly.

36.1. Sonar Runner version and compatibility

The default version of the Sonar Runner used by the plugin is 2.3, which makes it compatible with Sonar 3.0
and higher. For compatibility with Sonar versions earlier than 3.0, you can configure the use of an earlier Sonar
Runner version (see Section 36.4, “ Specifying the Sonar Runner version”).

36.2. Getting started

To get started, apply the Sonar Runner plugin to the project to be analyzed.

Page 210 of 448

http://www.sonarsource.org
http://docs.codehaus.org/display/SONAR/Analyzing+with+SonarQube+Runner

Example 36.1. Applying the Sonar Runner plugin

bui I d. gradl e

apply plugin: "sonar-runner"

Assuming a local Sonar server with out-of-the-box settings is up and running, no further mandatory
configuration is required. Execute gr adl e sonar Runner and wait until the build has completed, then open
the web page indicated at the bottom of the Sonar Runner output. You should now be able to browse the
analysis results.

Before executing the sonar Runner task, all tasks producing output to be analysed by Sonar need to be
executed. Typicaly, these are compile tasks, test tasks, and code coverage tasks. To meet these needs, the
plugins adds a task dependency from sonar Runner ont est if the j ava plugin is applied. Further task
dependencies can be added as needed.

36.3. Configuring the Sonar Runner

The Sonar Runner plugin adds a Sonar Runner Root Ext ensi on extension to the project and a
Sonar Runner Ext ensi on extension to its subprojects, which allows you to configure the Sonar Runner via
key/value pairs known as Sonar properties. A typical base line configuration includes connection settings for
the Sonar server and database.

Example 36.2. Configuring Sonar connection settings
buil d. gradl e

sonar Runner {
sonar Properties {
property "sonar.host.url", "http://ny.server.cont
property "sonar.jdbc.url", "jdbc:mysql://my.server.con sonar"
property "sonar.jdbc.driverC assNane", "com nysql.jdbc.Driver"
property "sonar.jdbc. usernane", "Fred Flintstone"
property "sonar.jdbc. password", "very clever"

Alternatively, Sonar properties can be set from the command line. See Section 35.6, “Configuring Sonar
Settings from the Command Line” for more information.

For a complete list of standard Sonar properties, consult the Sonar documentation. If you happen to use
additional Sonar plugins, consult their documentation.

In addition to set Sonar properties, the Sonar Runner Root Ext ensi on extension allows the configuration of
the Sonar Runner version and the JavaFor kOpt i ons of the forked Sonar Runner process.

The Sonar Runner plugin leverages information contained in Gradl€'s object model to provide smart defaults for
many of the standard Sonar properties. The defaults are summarized in the tables below. Notice that additional
defaults are provided for projects that have the j ava- base or j ava plugin applied. For some properties
(notably server and database connection settings), determining a suitable default is left to the Sonar Runner.

Page 211 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.sonar.runner.SonarRunnerRootExtension.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.sonar.runner.SonarRunnerExtension.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.sonar.runner.SonarRunnerExtension.html
http://docs.codehaus.org/display/SONAR/Analysis+Parameters
http://www.gradle.org/docs/2.3/dsl/org.gradle.sonar.runner.SonarRunnerRootExtension.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/process/JavaForkOptions.html

Table 36.1. Gradle defaultsfor standard Sonar properties

Property Gradle default

sonar.projectKey “$project.group:$project.name”’ (for root project of analysed hierarchy; left to
Sonar Runner otherwise)

sonar.projectName project.name

sonar.projectDescription project.description

sonar.projectVersion project.version
sonar.projectBaseDir project.projectDir
sonar.working.directory “$project.buildDir/sonar”
sonar.dynamicAnalysis “reuseReports’

Table 36.2. Additional defaultswhen j ava- base plugin isapplied

Property Gradle default
sonar.java.source project.sourceCompatibility

sonar.javatarget project.targetCompatibility

Table 36.3. Additional defaultswhen j ava plugin isapplied

Property Gradle default

sonar.sources sourceSets.main.all Source.sreDirs (filtered to only include existing
directories)

sonar.tests sourceSets.test.all Source.sreDirs (filtered to only include existing directories)

sonar.binaries sourceSets.main.runtimeClasspath (filtered to only include directories)

sonar.libraries sourceSets.main.runtimeClasspath (filtering to only includefiles; rt . j ar

added if necessary)
sonar.surefire.reportsPath test.testResultsDir (if the directory exists)

sonar.junit.reportsPath test.testResultsDir (if the directory exists)

Table 36.4. Additional defaultswhen j acoco plugin isapplied

Property Gradle default

sonar.jacoco.reportPath jacoco.destinationFile

Page 212 of 448

36.4. Specifying the Sonar Runner version

By default, version 2.3 of the Sonar Runner is used. To specify an alternative version, set the
Sonar Runner Root Ext ensi on. get Tool Ver si on() property of the sonar Runner extension of the
project the plugin was applied to to the desired version. Thiswill result in the Sonar Runner dependency or g. code
being used as the Sonar Runner.

Example 36.3. Configuring Sonar runner version

buil d. gradl e

sonar Runner {
tool Version = '2.3" // default

}

36.5. Analyzing Multi-Project Builds

The Sonar Runner is capable of analyzing whole project hierarchies at once. This yields a hierarchical view in
the Sonar web interface, with aggregated metrics and the ability to drill down into subprojects. Analyzing a
project hierarchy also takes less time than analyzing each project separately.

To analyze a project hierarchy, apply the Sonar Runner plugin to the root project of the hierarchy. Typically
(but not necessarily) this will be the root project of the Gradle build. Information pertaining to the analysis as a
whole, like server and database connections settings, have to be configured in the sonar Runner block of this
project. Any Sonar properties set on the command line also apply to this project.

Example 36.4. Global configuration settings

bui I d. gradl e

sonar Runner {
sonar Properties {
property "sonar.host.url", "http://ny.server.cont
property "sonar.jdbc.url", "jdbc:mnmysql://my.server.con sonar”

property "sonar.jdbc. driverC assNane", "com nysql.jdbc.Driver"
property "sonar.jdbc.usernane", "Fred Flintstone"
property "sonar.jdbc. password", "very clever"

Configuration shared between subprojects can be configured in asubpr oj ect s block.

Page 213 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.sonar.runner.SonarRunnerRootExtension.html#org.gradle.sonar.runner.SonarRunnerRootExtension:toolVersion
http://www.gradle.org/docs/2.3/dsl/org.gradle.sonar.runner.SonarRunnerRootExtension.html#org.gradle.sonar.runner.SonarRunnerRootExtension:toolVersion

Example 36.5. Shared configuration settings

bui I d. gradl e

subproj ects {
sonar Runner {
sonar Properties {

property "sonar.sourceEncodi ng", "UTF-8"

Project-specific information is configured in the sonar Runner block of the corresponding project.

Example 36.6. Individual configuration settings
buil d. gradl e

project(":projectl") {
sonar Runner {
sonar Properties {
property "sonar.| anguage", "grvy"

To skip Sonar analysis for a particular subproject, set sonar Runner . ski pPr oj ect totr ue.

Example 36.7. Skipping analysis of a project
buil d. gradl e

project (":project2") {
sonar Runner {
ski pProject = true

}

36.6. Analyzing Custom Source Sets

By default, the Sonar Runner plugin passes on the project's mai n source set as production sources, and the
project's t est source set as test sources. This works regardless of the project's source directory layout.
Additional source sets can be added as needed.

Example 36.8. Analyzing custom sour ce sets

buil d. gradl e

sonar Runner {
sonar Properties {
properties["“sonar.sources"] += sourceSets.custom all Source.srcDirs

properties["sonar.tests"] += sourceSets.integTest.all Source.srcDirs

Page 214 of 448

36.7. Analyzing languages other than Java

To analyze code written in a language other than Java, you'll need to set sonar . pr oj ect . | anguage
accordingly. However, note that your Sonar server has to have the Sonar plugin that handles that programming
language.

Example 36.9. Analyzing languages other than Java

bui I d. gradl e

sonar Runner {
sonar Properties {
property "sonar.|anguage", "grvy" // set |anguage to G oovy

}

As of Sonar 3.4, only one language per project can be analyzed. It is, however, possible to analyze a different
language for each project in amulti-project build.

36.8. More on configuring Sonar properties

Let's take a closer look at the sonar Runner . sonar Properties {} block. Aswe have aready seen in
the examples, the property() method allows you to set new properties or override existing ones.
Furthermore, all properties that have been configured up to this point, including all properties preconfigured by
Gradle, are available viathe pr opert i es accessor.

Entries in the pr operti es map can be read and written with the usual Groovy syntax. To facilitate their
manipulation, values still have their “idiomatic” type (Fi | e, Li st, etc.). After the sonarProperties block has
been evaluated, values are converted to Strings as follows: Collection values are (recursively) converted to
commarseparated Strings, and all other values are converted by calling their t oSt ri ng() method.

Because the sonar Properti es block is evaluated lazily, properties of Gradle's object model can be safely
referenced from within the block, without having to fear that they have not yet been set.

36.9. Setting Sonar Properties from the Command
Line
Sonar Properties can also be set from the command line, by setting a system property named exactly like the

Sonar property in question. This can be useful when dealing with sensitive information (e.g. credentials),
environment information, or for ad-hoc configuration.

gradl e sonar Runner -Dsonar. host. url=http://sonar. myconmpany.com - Dsonar . j dbc. passwo

While certainly useful at times, we do recommend to keep the bulk of the configuration in a (versioned)

Page 215 of 448

http://www.sonarsource.com/products/plugins/languages/

build script, readily available to everyone.

A Sonar property value set via a system property overrides any value set in a build script (for the same
property). When analyzing a project hierarchy, values set via system properties apply to the root project of the
analyzed hierarchy. Each system property starting with ""
setup.

sonar . " will taken into account for the sonar runner

36.10. Controlling the Sonar Runner process

The Sonar Runner is executed in a forked process. This allows fine grained control over memory settings,
system properties etc. just for the Sonar Runner process. The f or kOpt i ons property of the sonar Runner
extension of the project that applies the sonar - runner plugin (Usualy the r oot Proj ect but not
necessarily) allows the process configuration to be specified. This property is not available in the

Sonar Runner Ext ensi on extension applied to the subprojects.

Example 36.10. setting custom Sonar Runner fork options

buil d. gradl e

sonar Runner {
forkOptions {
maxHeapSi ze = ' 512m

}

For a complete reference about the available options, see JavaFor kQpt i ons.

36.11. Tasks

The Sonar Runner plugin adds the following tasks to the project.

Table 36.5. Sonar Runner plugin - tasks

Task name Depends Type Description
on
sonar Runner - Sonar Runner Analyzes a project hierarchy and storesthe resultsin
the Sonar database.

Page 216 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.sonar.runner.SonarRunnerExtension.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.sonar.runner.SonarRunnerExtension.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/process/JavaForkOptions.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.sonar.runner.tasks.SonarRunner.html

37

The OSGI Plugin

The OSGi plugin provides a factory method to create an Osgi Mani f est object. Osgi Mani f est extends
Mani f est. To learn more about generic manifest handling, see Section 23.14.1, “Manifest”. If the Java
plugins is applied, the OSGi plugin replaces the manifest object of the default jar with an Osgi Mani f est
object. The replaced manifest is merged into the new one.

The OSGi plugin makes heavy use of Peter Kriens BND tool.

37.1. Usage

To use the OSGi plugin, include the following in your build script:

Example 37.1. Using the OSGi plugin

bui I d. gradl e

apply plugin: 'osgi'

37.2. Implicitly applied plugins

Applies the Java base plugin.

37.3. Tasks

This plugin does not add any tasks.

37.4. Dependency management

TBD

37.5. Convention object

The OSGi plugin adds the following convention object: Gsgi Pl ugi nConventi on

Page 217 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/plugins/osgi/OsgiManifest.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/java/archives/Manifest.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/java/archives/Manifest.html
http://www.aqute.biz/Code/Bnd
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.osgi.OsgiPluginConvention.html

37.5.1. Convention properties

The OSGi plugin does not add any convention properties to the project.

37.5.2. Convention methods

The OSGi plugin adds the following methods. For more details, see the APl documentation of the convention
object.

Table 37.1. OSGi methods

Method Return Type Description

osgiManifest() Gsgi Mani f est Returns an OsgiManifest object.
osgiManifest(Closure Osgi Mani f est Returns an OsgiManifest object configured by the
cl) closure.

The classes in the classes dir are analyzed regarding their package dependencies and the packages they expose.
Based on this the Import-Package and the Export-Package values of the OSGi Manifest are calculated. If the
classpath contains jars with an OSGi bundle, the bundle information is used to specify version information for
the Import-Package value. Beside the explicit properties of the Osgi Mani f est object you can add
instructions.

Example 37.2. Configuration of OSGi MANIFEST.MF file
buil d. gradl e

jar {
mani fest { // the manifest of the default jar is of type Osgi Manifest

nanme = 'overwittenSpeci al Osgi Nane'

instruction 'Private-Package',
'org. myconp. packagel',
' org. nyconp. package2'

instruction 'Bundl e-Vendor', ' M/Conmpany'

instruction 'Bundl e-Description', 'Platforn2: Metrics 2 Measures Franmewor k'

i nstruction 'Bundl e-DocURL', 'http://wwmv. nyconpany. coni

}
}
task fooJdar(type: Jar) {
mani f est = osgi Mani fest {
i nstruction 'Bundl e-Vendor', ' M/Conpany'

}

The first argument of the instruction call is the key of the property. The other arguments form the value. To
learn more about the available instructions have alook at the BND tool.

Page 218 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/plugins/osgi/OsgiManifest.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/plugins/osgi/OsgiManifest.html
http://www.aqute.biz/Code/Bnd

38

The Eclipse Plugins

The Eclipse plugins generate files that are used by the Eclipse IDE, thus making it possible to import the project
into Eclipse (File - Import... - Existing Projects into Workspace). Both external dependencies (including
associated source and Javadoc files) and project dependencies are considered.

Since version 1.0-milestone-4 of Gradle, the WTP-generating code was refactored into a separate plugin called ecl i
. So if you are interested in WTP integration then only apply the ecl i pse-wt p plugin. Otherwise applying
theecl i pse pluginisenough. This change was requested by Eclipse users who take advantage of the war or ear
plugins, but who don't use Eclipse WTP. Internally, the ecl i pse-wt p plugin also applies the ecl i pse
plugin so you don't need to apply both of those plugins.

What exactly theecl i pse plugin generates depends on which other plugins are used:

Table 38.1. Eclipse plugin behavior
Plugin Description
None Generates minimal . pr oj ect file.
Java Adds Java configurationto . pr oj ect . Generates. cl asspat h and JDT settingsfile.
Groovy Adds Groovy configurationto . pr oj ect file.
Scala Adds Scalasupport to . pr oj ect and. cl asspat h files.
War Adds web application support to . pr oj ect file.

Ear Adds ear application support to . pr oj ect file.

However, the ecl i pse-wt p plugin always generates all WTP settings files and enhances the . pr oj ect
file. If a Java or War is applied, . cl asspat h will be extended to get a proper packaging structure for this
utility library or web application project.

Both Eclipse plugins are open to customization and provide a standardized set of hooks for adding and
removing content from the generated files.

38.1. Usage

To use either the Eclipse or the Eclipse WTP plugin, include one of the linesin your build script:

Page 219 of 448

http://eclipse.org

Example 38.1. Using the Eclipse plugin

bui I d. gradl e

apply plugin: 'eclipse'

Example 38.2. Using the Eclipse WTP plugin
buil d. gradl e

apply plugin: '"eclipse-wtp'

Note: Internally, theecl i pse- wt p plugin also appliestheecl i pse plugin so you don't need to apply both.

Both Eclipse plugins add a number of tasksto your projects. The main tasks that you will use arethe ecl i pse
and cl eanEcl i pse tasks.

38.2. Tasks

The Eclipse plugins add the tasks shown below to a project.

Table 38.2. Eclipse plugin - tasks

Task name Depends on Type Description
ecl i pse all Eclipse Task Generates al Eclipse
configuration
file
generation
tasks
cl eanEcl i pse al Eclipse Del ete Removes all Eclipse (
configuration
file clean
tasks
cl eanEcl i pseProj ect - Del et e Removesthe. pr oj
cl eankcl i psed asspath - Del et e Removesthe. cl as:
cl eanEcl i pseJddt - Del et e Removesthe. set t i
file
ecl i pseProj ect - Cener at eEcl i psePr oj ect Generatesthe. pr 0]
ecl i psed asspat h - Cener at eEcl i pseC asspath Generatesthe. cl as
ecl i pseJddt - CGener at eEcl i pseJdt Generatesthe. sett
file

Page 220 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseProject.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseClasspath.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseJdt.html

Table 38.3. Eclipse WTP plugin - additional tasks

Task name

cl eanEcl i pseW pConponent

cl eanEcl i pseW pFacet

ecl i pseW pConponent

ecl i pseW pFacet

Depends Type
on

Del et e

- Del et e

- Cener at eEcl i pseW pConmponent Generatesthe.

38.3. Configuration

Table 38.4. Configuration of the Eclipse plugins

M od€l

Ecl i pseMbdel

Ecl i pseProj ect

Ecl i psed asspat h

Ecl i pseJdt

Ecl i pseW pConponent

Ecl i pseW pFacet

Description

Removesthe. s

Removesthe. s
file.

)]

- Cener at eEcl i pseW pFacet Generatesthe. s
file.
Reference name Description
ecli pse Top level element that enables

ecl i pse. proj ect

ecl i pse.cl asspath

eclipse.jdt

ecl i pse. wt p. conponent

eclipse. wp. facet

configuration of the Eclipse pluginin a
DSL -friendly fashion.

Allows configuring project information

Allows configuring classpath
information.

Allows configuring jdt information
(sourcef/target Java compatibility).

Allows configuring wtp component
information only if ecl i pse-wt p
plugin was applied.

Allows configuring wtp facet
information only if ecl i pse-wt p
plugin was applied.

38.4. Customizing the generated files

The Eclipse plugins alow you to customize the generated metadata files. The plugins provide a DSL for
configuring model objects that model the Eclipse view of the project. These model objects are then merged with
the existing Eclipse XML metadata to ultimately generate new metadata. The model objects provide lower level
hooks for working with domain objects representing the file content before and after merging with the model
configuration. They also provide a very low level hook for working directly with the raw XML for adjustment
beforeit is persisted, for fine tuning and configuration that the Eclipse and Eclipse WTP plugins do not model.

Page 221 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseWtpComponent.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseWtpFacet.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.eclipse.model.EclipseModel.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.eclipse.model.EclipseProject.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.eclipse.model.EclipseClasspath.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.eclipse.model.EclipseJdt.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpComponent.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpFacet.html

38.4.1. Merging

Sections of existing Eclipse files that are also the target of generated content will be amended or overwritten,
depending on the particular section. The remaining sections will be left as-is.

38.4.1.1. Disabling merging with a complete rewrite

To completely rewrite existing Eclipse files, execute a clean task together with its corresponding generation
task, like “gradl e cl eanEcli pse eclipse” (in that order). If you want to make this the default
behavior, add “t asks. ecl i pse. dependsOn(cl eanEcl i pse)” to your build script. This makes it
unnecessary to execute the clean task explicitly.

This strategy can also be used for individual files that the plugins would generate. For instance, this can be done
forthe®. cl asspat h” filewith“gr adl e cl eanEcl i pseC asspath ecli pseC asspath”.

38.4.2. Hooking into the generation lifecycle

The Eclipse plugins provide objects modeling the sections of the Eclipse files that are generated by Gradle. The
generation lifecycle is as follows:

1. Thefileisread; or adefault version provided by Gradleis used if it does not exist

2. Thebef or eMer ged hook is executed with a domain object representing the existing file

3. Theexisting content is merged with the configuration inferred from the Gradle build or defined explicitly in
the eclipse DSL

4. ThewhenMer ged hook is executed with a domain object representing contents of the file to be persisted

5. Thewi t hXm hook is executed with araw representation of the XML that will be persisted

6. Thefina XML is persisted

The following table lists the domain object used for each of the Eclipse model types:

Table 38.5. Advanced configuration hooks

M odel bef oreMerged { arg ->} whenMerged { arg ->} wthX
argument type argument type argume

Ecl i pseProj ect Pr oj ect Pr oj ect Xm Pr

Ecl i psed asspat h O asspat h Cl asspat h Xm Pr

Ecl i pseJdt Jdt Jdt -

Ecl i pseW pConponent W pConponent W pConponent Xm Pr

Ecl i pseW pFacet W pFacet W pFacet Xm Pr

Page 222 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.eclipse.model.EclipseProject.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/plugins/ide/eclipse/model/Project.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/plugins/ide/eclipse/model/Project.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.eclipse.model.EclipseClasspath.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/plugins/ide/eclipse/model/Classpath.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/plugins/ide/eclipse/model/Classpath.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.eclipse.model.EclipseJdt.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/plugins/ide/eclipse/model/Jdt.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/plugins/ide/eclipse/model/Jdt.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpComponent.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/plugins/ide/eclipse/model/WtpComponent.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/plugins/ide/eclipse/model/WtpComponent.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpFacet.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/plugins/ide/eclipse/model/WtpFacet.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/plugins/ide/eclipse/model/WtpFacet.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/XmlProvider.html

38.4.2.1. Partial overwrite of existing content

A complete overwrite causes all existing content to be discarded, thereby losing any changes made directly in
the IDE. Alternatively, the bef or eMer ged hook makes it possible to overwrite just certain parts of the
existing content. The following example removes all existing dependencies from the Cl asspat h domain
object:

Example 38.3. Partial Overwritefor Classpath

buil d. gradl e

ecl i pse.classpath.file {
bef oreMerged { cl asspath ->
classpath.entries.removeAll { entry -> entry.kind == "'lib" || entry.kind =

}

The resulting . cl asspat h file will only contain Gradle-generated dependency entries, but not any other
dependency entries that may have been present in the origina file. (In the case of dependency entries, this is
also the default behavior.) Other sections of the . cl asspat h file will be either |eft as-is or merged. The same
could be done for the naturesin the . pr oj ect file

Example 38.4. Partial Overwrite for Project
buil d. gradl e

eclipse.project.file.beforeMerged { project ->
proj ect. natures. cl ear ()

}

38.4.2.2. Modifying the fully popul ated domain objects

The whenMer ged hook allows to manipulate the fully populated domain objects. Often this is the preferred
way to customize Eclipse files. Here is how you would export al the dependencies of an Eclipse project:

Example 38.5. Export Dependencies
buil d. gradl e

eclipse.classpath.file {
whenMerged { cl asspath ->
classpath.entries.findAll { entry -> entry.kind == "lib" }*.exported = fal

}

Page 223 of 448

38.4.2.3. Modifying the XML representation

Thewi t hXm hook allows to manipulate the in-memory XML representation just before the file gets written to
disk. Although Groovy's XML support makes up for a lot, this approach is less convenient than manipulating
the domain objects. In return, you get total control over the generated file, including sections not modeled by the
domain objects.

Example 38.6. Customizing the XML
buil d. gradl e
apply plugin: '"eclipse-wp'

eclipse.wtp.facet.file.withXm { provider ->

provi der.asNode().fixed.find { it. @acet == "jst.java" }.@acet = '|jst2.]ava

}

Page 224 of 448

39

The IDEA Plugin

The IDEA plugin generates files that are used by IntelliJ IDEA, thus making it possible to open the project from
IDEA (File - Open Project). Both external dependencies (including associated source and Javadoc files) and
project dependencies are considered.

What exactly the IDEA plugin generates depends on which other plugins are used:

Table 39.1. IDEA plugin behavior

Plugin Description

None Generates an IDEA module file. Also generates an IDEA project and workspace fileif the
project is the root project.

Java Adds Java configuration to the module and project files.

One focus of the IDEA plugin is to be open to customization. The plugin provides a standardized set of hooks
for adding and removing content from the generated files.

39.1. Usage

To use the IDEA plugin, include thisin your build script:

Example 39.1. Using the IDEA plugin

buil d. gradl e

apply plugin: 'idea'

The IDEA plugin adds a number of tasksto your project. The main tasks that you will use arethe i dea and cl ean
tasks.

39.2. Tasks

The IDEA plugin adds the tasks shown below to a project. Notice that the cl ean task does not depend on the cl ea
task. Thisis because the workspace typically contains alot of user specific temporary data and it is not desirable
to manipulate it outside IDEA.

Page 225 of 448

http://www.jetbrains.com/idea/

Table 39.2. IDEA plugin - Tasks

Task name Dependson Type Description

i dea i deaPr oj ect ,i deaMbdul e Generates al
,i deaWbr kspace IDEA
configuration
files

cl eanl dea cl eanl deaPr oj ect Del et e Removes all
, cl eanl deaModul e IDEA
configuration
files

cl eanl deaPr oj ect - Del et e Removes the
IDEA project
file

cl eanl deaMbdul e - Del et e Removes the
IDEA
modulefile

cl eanl deawr kspace - Del et e Removes the
IDEA
workspace
file

i deaPr oj ect - CGener at el deaPr oj ect Generates
the. i pr
file. This
task isonly
added to the
root project.

i deaMbdul e - Gener at el deaModul e Generates
the.im
file

i deaWwsr kspace - CGener at el deaWbr kspace Generates
the. i ws
file. This
task isonly
added to the
root project.

Page 226 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.idea.GenerateIdeaProject.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.idea.GenerateIdeaModule.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.idea.GenerateIdeaWorkspace.html

39.3. Configuration

Table 39.3. Configuration of theidea plugin

Model Reference name Description

| deaModel i dea Top level element that enables configuration of the idea
pluginin aDSL-friendly fashion

| deaPr oj ect i dea. proj ect Allows configuring project information
| deaModul e i dea. nodul e Allows configuring module information
| deaWor kspace idea.workspace Allows configuring the workspace XML

39.4. Customizing the generated files

The IDEA plugin provides hooks and behavior for customizing the generated content. The workspace file can
effectively only be manipulated via the wi t hXm hook because its corresponding domain object is essentialy
empty.

The tasks recognize existing IDEA files, and merge them with the generated content.

39.4.1. Merging

Sections of existing IDEA files that are also the target of generated content will be amended or overwritten,
depending on the particular section. The remaining sections will be left as-is.

39.4.1.1. Disabling merging with a complete overwrite

To completely rewrite existing IDEA files, execute a clean task together with its corresponding generation task,
like “gradl e cl eanl dea idea” (in that order). If you want to make this the default behavior, add “
tasks. i dea. dependsOn(cl eanl dea) ” to your build script. This makes it unnecessary to execute the
clean task explicitly.

This strategy can also be used for individual files that the plugin would generate. For instance, this can be done
forthe“. i m " filewith“gradl e cl eanl deaMbdul e i deaMbdul e”.

39.4.2. Hooking into the generation lifecycle

The plugin provides objects modeling the sections of the metadata files that are generated by Gradle. The
generation lifecycle is as follows:

1. Thefileisread; or adefault version provided by Gradleis used if it does not exist

2. Thebef or eMer ged hook is executed with a domain object representing the existing file

3. Theexisting content is merged with the configuration inferred from the Gradle build or defined explicitly in
the eclipse DSL

Page 227 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.idea.model.IdeaModel.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.idea.model.IdeaProject.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.idea.model.IdeaModule.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.idea.model.IdeaWorkspace.html

4. ThewhenMer ged hook is executed with a domain object representing contents of the file to be persisted
5. Thewi t hXm hook is executed with araw representation of the XML that will be persisted
6. Thefina XML is persisted

The following table lists the domain object used for each of the model types:

Table 39.4. Idea plugin hooks

M odel bef oreMerged { arg -> } whenMerged { arg -> } withxm { a
argument type argument type argument type
| deaPr oj ect Pr oj ect Pr oj ect Xm Provi der
| deaModul e Modul e Modul e Xm Provi der
| deaWr kspace Wor kspace Wor kspace Xm Provi der

39.4.2.1. Partial rewrite of existing content

A complete rewrite causes all existing content to be discarded, thereby losing any changes made directly in the
IDE. The bef or eMer ged hook makes it possible to overwrite just certain parts of the existing content. The
following example removes all existing dependencies from the Modul e domain object:

Example 39.2. Partial Rewritefor Module

bui I d. gradl e

i dea. modul e.im {
bef oreMerged { nodule ->
nmodul e. dependenci es. cl ear ()

}

The resulting module file will only contain Gradle-generated dependency entries, but not any other dependency
entries that may have been present in the original file. (In the case of dependency entries, thisis aso the default
behavior.) Other sections of the module file will be either left as-is or merged. The same could be done for the
module pathsin the project file:

Example 39.3. Partial Rewritefor Project
buil d. gradl e
i dea. project.ipr {

bef oreMerged { project ->
proj ect . nodul ePat hs. cl ear ()

}

39.4.2.2. Modifying the fully populated domain objects

The whenMer ged hook allows you to manipulate the fully populated domain objects. Often this is the
preferred way to customize IDEA files. Here is how you would export al the dependencies of an IDEA module;

Page 228 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.idea.model.IdeaProject.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/plugins/ide/idea/model/Project.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/plugins/ide/idea/model/Project.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.idea.model.IdeaModule.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/plugins/ide/idea/model/Module.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/plugins/ide/idea/model/Module.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.idea.model.IdeaWorkspace.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/plugins/ide/idea/model/Workspace.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/plugins/ide/idea/model/Workspace.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/XmlProvider.html

Example 39.4. Export Dependencies

bui I d. gradl e

i dea. modul e.inml {
whenMerged { nodule ->
nmodul e. dependenci es*. exported = true

}

39.4.2.3. Modifying the XML representation

The wi t hXm hook alows you to manipulate the in-memory XML representation just before the file gets
written to disk. Although Groovy's XML support makes up for a lot, this approach is less convenient than
manipulating the domain objects. In return, you get total control over the generated file, including sections not
modeled by the domain objects.

Example 39.5. Customizing the XML
buil d. gradl e
i dea. proj ect.ipr {
withXm { provider ->

provi der . node. conponent
.find { it. @ane == '\VcsDirectoryMppings' }

. mapping. @cs = 'Gt'

39.5. Further things to consider

The paths of dependencies in the generated IDEA files are absolute. If you manually define a path variable
pointing to the Gradle dependency cache, IDEA will automatically replace the absolute dependency paths with
this path variable. you can configure this path variable viathe “i dea. pat hVari abl es” property, so that it
can do a proper merge without creating duplicates.

Page 229 of 448

40

The ANTLR Plugin

The ANTLR plugin extends the Java plugin to add support for generating parsersusing ANTLR.

The ANTLR plugin supports ANTLR version 2, 3 and 4.

40.1. Usage

To use the ANTLR plugin, include the following in your build script:

Example 40.1. Using the ANTLR plugin

buil d. gradl e

apply plugin: "antlr'

40.2. Tasks

The ANTLR plugin adds a number of tasksto your project, as shown below.

Table40.1. ANTLR plugin - tasks

Task name Depends Type

on
gener at eG anmmar Sour ce - Ant | r Task
gener at eTest G ammar Sour ce - Ant | r Task
gener at eSour ceSet Gr anmar Source Ant | r Task

Description

Generates the source files for all
production ANTLR grammars.

Generates the source files for all
test ANTLR grammars.

Generates the source files for all
ANTLR grammars for the given
source set.

The ANTLR plugin adds the following dependencies to tasks added by the Java plugin.

Page 230 of 448

http://www.antlr.org/
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.antlr.AntlrTask.html

Table40.2. ANTLR plugin - additional task dependencies

Task name Dependson
compileJava generateGrammar Source
compileTestJava generateTestGrammarSource

compileSour ceSet Java generateSour ceSet GrammarSource

40.3. Project layout

Table40.3. ANTLR plugin - project layout

Directory Meaning
src/main/antlr Production ANTLR grammar files.
src/test/antlr Test ANTLR grammar files.

src/sourceSet/antlr ANTLR grammar files for the given source set.

40.4. Dependency management

The ANTLR plugin adds an ant | r dependency configuration which provides the ANTLR implementation to
use. The following example shows how to use ANTLR version 3.

Example 40.2. Declare ANTLR version

buil d. gradl e

repositories {
mavenCentral ()

}

dependenci es {
antlr "org.antlr:antlr:3.5.2" // use ANTLR version 3

}

If no dependency is declared, ant | r: antlr: 2. 7.7 will be used as the default. To use a different ANTLR
version add the appropriate dependency to the ant | r dependency configuration as above.

40.5. Convention properties

The ANTLR plugin does not add any convention properties.

40.6. Source set properties

The ANTLR plugin adds the following properties to each source set in the project.

Page 231 of 448

Table40.4. ANTLR plugin - source set properties

Property name Type
antlr Sour ceDi r ect or ySet
(read-only)

antlr.srcDirs Set<File>. Canset
using anything described
in Section 16.5,
“Specifying a set of input
files.

Default value Description

Not null The ANTLR grammar files of this
source set. Containsall . g files
found in the ANTLR source
directories, and excludes all other
types of files.

[proj ect Di r/ sThe soane/daretiories containing
the ANTLR grammar files of this
source set.

40.7. Controlling the ANTLR generator process

The ANTLR tool is executed in aforked process. This allows fine grained control over memory settings for the
ANTLR process. To set the heap size of a ANTLR process, the maxHeapSi ze property of Ant | r Task can

be used.

Example 40.3. setting custom max heap sizefor ANTLR

buil d. gradl e

gener at eG anmar Sour ce {

maxHeapSi ze = " 64nt

}

Page 232 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/SourceDirectorySet.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.antlr.AntlrTask.html

41

The Project Report Plugin

The Project report plugin adds some tasks to your project which generate reports containing useful information
about your build. These tasks generate the same content that you get by executing the t asks, dependenci es
,and pr oper ti es tasks from the command line (see Section 11.6, “Obtaining information about your build”).
In contrast to the command line reports, the report plugin generates the reports into a file. There is also an
aggregating task that depends on all report tasks added by the plugin.

We plan to add much more to the existing reports and create additional onesin future releases of Gradle.

41.1. Usage

To use the Project report plugin, include the following in your build script:

apply plugin: 'project-report'

41.2. Tasks

The project report plugin defines the following tasks:

Page 233 of 448

Table41.1. Project report plugin - tasks

Task name Dependson Type

Descri

dependencyReport - DependencyReport Task Generi

the prc
depenc
report.

ht M DependencyReport - Ht M DependencyReport Task Generi

propertyReport - Pr opert yReport Task

t askReport - TaskReport Task

pr oj ect Report dependencyReport , properTg&eport
,taskReport, ht m DependencyReport

41.3. Project layout

The project report plugin does not require any particular project layout.

41.4. Dependency management

The project report plugin does not define any dependency configurations.

41.5. Convention properties

The project report defines the following convention properties:

anHT
depenc
and

depenc
insight
report
the prc
orase
projec

Generi
the prc
proper
report.
Generi

the prc
task re

Generi
al pro
reports

Page 234 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.diagnostics.DependencyReportTask.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.reporting.dependencies.HtmlDependencyReportTask.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.diagnostics.PropertyReportTask.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.diagnostics.TaskReportTask.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Task.html

Table 41.2. Project report plugin - convention properties

Property name

report sDi r Nane

reportsDir

proj ects

proj ect Report Di r Nane

proj ect ReportDir

These convention

properties are

Type
String

Fi | e (read-only)

Set <Pr oj ect >

String

Fi | e (read-only)

Pr oj ect Report sPl ugi nConventi on.

provided

Default value

reports

Description

The name of the
directory to
generate reports
into, relative to
the build
directory.

bui | dDi r/ r epor t sDi r NaneThe directory to

A one element set with the
project the plugin was
applied to.

pr oj ect

generate reports
into.

The projectsto
generate the
reportsfor.

The name of the
directory to
generate the
project report
into, relative to
the reports
directory.

reportsDir/ proj ect ReporTi# diNztaey to

by a convention

generate the
project report
into.

object of type

Page 235 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.ProjectReportsPluginConvention.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.ProjectReportsPluginConvention.html

42

The Announce Plugin

The Gradle announce plugin alows you to send custom announcements during a build. The following
notification systems are supported:

* Twitter

® notify-send (Ubuntu)
® Snarl (Windows)

* Growl (Mac OS X)

42.1. Usage

To use the announce plugin, apply it to your build script:

Example 42.1. Using the announce plugin

buil d. gradl e

apply plugin: '"announce'

Next, configure your notification service(s) of choice (see table below for which configuration properties are
available):

Example 42.2. Configure the announce plugin

buil d. gradl e

announce {
user nane "yl d'
password " myPasswor d

}

Finally, send announcements with the announce method:

Page 236 of 448

http://twitter.com
http://manpages.ubuntu.com/manpages/gutsy/man1/notify-send.1.html
https://sites.google.com/site/snarlapp/home
http://growl.info/

Example 42.3. Using the announce plugin

bui I d. gradl e

task helloWorld << {

println "Hell o,

}

hel | oWor | d. doLast {
announce. announce("hel | oWorl d conpleted!", "twitter")
announce. announce(" hel | oWorl d conpleted!", "local")

wor | d!'"

The announce method takes two String arguments: The message to be sent, and the natification service to be
used. The following table lists supported notification services and their configuration properties.

Table 42.1. Announce Plugin Notification Services

Notification
Service

twitter

snarl
growl

notify-send

local

Operating
System

Any

Windows
Mac OS X

Ubuntu

Windows,
Mac OS X,
Ubuntu

Configuration

Properties

username,
password

42.2. Configuration

See the AnnouncePl ugi nExt ensi on classin the APl documentation.

Further Information

Requires the notify-send package to be installed. Use sudo
toinstal it.

Automatically chooses between snarl, growl, and
notify-send depending on the current operating
system.

Page 237 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.announce.AnnouncePluginExtension.html

43

The Build Announcements Plugin

The build announcements plugin is currently incubating. Please be aware that the DSL and other
configuration may changein later Gradle versions.

The build announcements plugin uses the announce plugin to send local announcements on important events in
the build.

43.1. Usage

To use the build announcements plugin, include the following in your build script:

Example 43.1. Using the build announcements plugin

buil d. gradl e

apply plugin: 'build-announcenents'

That's it. If you want to tweak where the announcements go, you can configure the announce plugin to change
thelocal announcer.

Y ou can a'so apply the plugin from an init script:

Example 43.2. Using the build announcements plugin from an init script
init.gradle

root Proj ect {

apply plugin: 'build-announcenents’

}

Page 238 of 448

A4

The Distribution Plugin

The distribution plugin is currently incubating. Please be aware that the DSL and other configuration may
changein later Gradle versions.

The distribution plugin facilitates building archives that serve as distributions of the project. Distribution
archives typically contain the executable application and other supporting files, such as documentation.

44.1. Usage

To use the distribution plugin, include the following in your build script:

Example 44.1. Using the distribution plugin

buil d. gradl e
apply plugin: '"distribution'

The plugin adds an extension named “di stri buti ons” of type Di stri buti onCont ai ner to the
project. It also creates a single distribution in the distributions container extension named “nmai n”. If your build
only produces one distribution you only need to configure this distribution (or use the defaults).

You can run “gr adl e di st Zi p” to package the main distribution as a ZIP, or “gr adl e di st Tar” to
create a TAR file. To build both types of archivesjust run gr adl e assenbl eDi st . Thefileswill be created
at“$bui | dDi r / di stributions/ $project. name- $proj ect. versi on. «ext»”.

Youcanrun“gradl e i nstal | Di st” toassemble the uncompressed distributioninto “ $bui | dDi r /i nst al |

44.2. Tasks

The Distribution plugin adds the following tasks to the project:

Page 239 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.distribution.DistributionContainer.html

Table 44.1. Distribution plugin - tasks

Task name Depends Type Description

on
distzZip - Zip Creates a ZIP archive of the distribution contents
di st Tar - Tar Creates a TAR archive of the distribution contents

assenbl eDi st Task Creates ZIP and TAR archives with the distribution contents

install D st - Sync Assemblesthe distribution content and installsit on the
current machine

For each extra distribution set you add to the project, the distribution plugin adds the following tasks:

Table44.2. Multipledistributions - tasks

Task name Depends Type Description
on

${di stribution.nane}DistZp - Zip Creates a ZIP archive of the
distribution contents

${di stribution. nane}Di st Tar - Tar Createsa TAR archive of the
distribution contents

instal | ${distribution.name.capitalize()}D st Sync Assemblesthe distribution
content and installsit on the
current machine

Example 44.2. Adding extra distributions

buil d. gradl e

apply plugin: "distribution’

version = '1.2'
di stributions {
custom {}

}

Thiswill add following tasks to the project:

® customDistZip
® customDistTar
® installCustomDist

Given that the project nameis“mypr oj ect ” and version“1. 2", running “gr adl e cust onDi st Zi p” will
produce a ZIP file named “nypr oj ect - cust om 1. 2. zi p”.

Running “gr adl e i nstal | Cust onDi st ” will install the distribution contentsinto “ $bui | dDi r /i nst al | /

Page 240 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Sync.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Sync.html

44.3. Distribution contents

All of thefilesinthe“src/ $di st ri buti on. nanme/ di st ” directory will automatically be included in the
distribution. You can add additional files by configuring the Di st ri buti on object that is part of the
container.

Example 44.3. Configuring the main distribution
buil d. gradl e
apply plugin: "distribution’
distributions {
mai n {
baseNane = ' soneNane'

contents {
from{ 'src/readne' }

apply plugin:' maven

upl oadAr chi ves {
repositories {
mavenDepl oyer {
repository(url: "file://sonme/repo")

In the example above, the content of the “sr ¢/ r eadne” directory will be included in the distribution (along
with thefilesinthe“sr ¢/ di st/ mai n” directory which are added by default).

The“baseNane” property has also been changed. Thiswill cause the distribution archives to be created with a
different name.

44.4. Publishing distributions

The distribution plugin adds the distribution archives as candidate for default publishing artifacts. With the naven
plugin applied the distribution zip file will be published when running uploadArchives if no other default
artifact is configured

Page 241 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/distribution/Distribution.html

Example 44.4. publish main distribution
buil d. gradl e
apply plugin:' maven

upl oadAr chi ves {
repositories {

mavenDepl oyer {
repository(url: "file://sonme/repo")

Page 242 of 448

45

The Application Plugin

The Gradle application plugin extends the language plugins with common application related tasks. It allows
running and bundling applications for the jvm by creating ajvm application Di st ri buti on.

45.1. Usage

To use the application plugin, include the following in your build script:

Example 45.1. Using the application plugin

buil d. gradl e
apply plugin:'application'

To define the main-class for the application you have to set the mai nCl assNane property as shown below

Example 45.2. Configure the application main class

buil d. gradl e

mai nCl assNane = "org. gradl e. sanpl e. Mai n"

Then, you can run the application by running gr adl e r un. Gradle will take care of building the application
classes, along with their runtime dependencies, and starting the application with the correct classpath. You can
launch the application in debug modewith gr adl e run --debug-j vm(seeJavaExec. set Debug()).

The plugin can aso build a distribution for your application. The Di st ri but i on will package up the runtime
dependencies of the application along with some OS specific start scripts. All filesstored in sr ¢/ di st will be
added to the root of the distribution. You can run gradl e installDi st to create an image of the
application in buil d/install/ projectName. You can run gradl e distZip to create a ZIP
containing the distribution, gr adl e di st Tar to create an application TAR or gr adl e assenbl e to build
both.

If your Java application requires a specific set of VM settings or system properties, you can configure the appl i c:
property. These VM arguments are applied to the r un task and also considered in the generated start scripts of
your distribution.

Page 243 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/distribution/Distribution.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/tasks/JavaExec.html#setDebug(boolean)
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/distribution/Distribution.html

Example 45.3. Configure default JVM settings

bui I d. gradl e

applicationDefaul tJvmArgs = ["-Dgreeting. | anguage=en"]

45.2. Tasks

The Application plugin adds the following tasks to the project.

Table 45.1. Application plugin - tasks

Task name Dependson Type Description
run cl asses JavaExec Starts the application.
startScripts jar CreateStartScripts Creates OS specific scriptsto run

the project asa JVM application.

install D st jar,startScriptSync Installs the application into a
specified directory.

distzip jar,startScriptaip Creates afull distribution ZIP
archive including runtime
libraries and OS specific scripts.

di st Tar jar,startScript$ar Creates afull distribution TAR
archive including runtime
libraries and OS specific scripts.

45.3. Convention properties

The application plugin adds some properties to the project, which you can use to configure its behaviour. See
the Pr oj ect classin the APl documentation.

45.4. Including other resources in the distribution

One of the convention properties added by the plugin is applicationDi stribution which is a
CopySpec. This specification isused by thei nst al | Di st and di st Zi p tasks as the specification of what
isto beincluded in the distribution. In addition to copying the start scripts to the bi n dir and necessary jarstol i b
in the distribution, al of the files from the sr c/ di st directory are also copied. To include any static filesin
the distribution, simply arrange them inthe sr ¢/ di st directory.

If your project generates files to be included in the distribution, e.g. documentation, you can add these files to
the distribution by adding to the appl i cati onDi stri buti on copy spec.

Page 244 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.JavaExec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.application.CreateStartScripts.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Sync.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/CopySpec.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/CopySpec.html

Example 45.4. Include output from other tasksin the application distribution
buil d. gradl e

task createDocs {
def docs = file("$buil dDir/docs")
out puts. dir docs
doLast {
docs. nkdi rs()
new Fi | e(docs, "readnme.txt").wite("Read ne!")

}

applicationbDi stribution.fron(createDocs) ({
into "docs"

}

By specifying that the distribution should include the task's output files (see Section 15.9.1, “Declaring a task's
inputs and outputs”), Gradle knows that the task that produces the files must be invoked before the distribution
can be assembled and will take care of thisfor you.

Example 45.5. Automatically creating filesfor distribution
Output of gradl e di stZip

> gradle distZip

: creat eDocs

:conpi | eJava

: processResour ces UP- TO- DATE
:cl asses

Djar

:startScripts

cdistzip

BU LD SUCCESSFUL

Total tinme: 1 secs

Page 245 of 448

46

TheJava Library Distribution Plugin

The Java library distribution plugin is currently incubating. Please be aware that the DSL and other
configuration may changein later Gradle versions.

The Java library distribution plugin adds support for building a distribution ZIP for a Java library. The
distribution contains the JAR file for the library and its dependencies.

46.1. Usage

To use the Javalibrary distribution plugin, include the following in your build script:

Example 46.1. Using the Java library distribution plugin

buil d. gradl e

apply plugin: 'java-library-distribution'

To define the name for the distribution you have to set the baseNane property as shown below:

Example 46.2. Configurethe distribution name
buil d. gradl e
di stributions {

mai n{
baseNane = ' ny- nane'

}

The plugin builds a distribution for your library. The distribution will package up the runtime dependencies of
the library. All files stored in sr ¢/ mai n/ di st will be added to the root of the archive distribution. You can
run“gradl e di st Zi p” to create aZIP file containing the distribution.

46.2. Tasks

The Javalibrary distribution plugin adds the following tasks to the project.

Page 246 of 448

Table 46.1. Javalibrary distribution plugin - tasks

Description

Task name Dependson Type
Creates afull distribution ZIP archive including runtime libraries.

distzip j ar Zip

46.3. Including other resources in the distribution

All of the files from the sr ¢/ di st directory are copied. To include any static files in the distribution, simply
arrangethem inthesr ¢/ di st directory, or add them to the content of the distribution.

Example 46.3. Includefilesin the distribution

bui I d. gradl e

di stributions {
mai n {
baseNane = ' ny-nane'

contents {
from{ '"src/dist' }

Page 247 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Zip.html

47

Build I'nit Plugin

The Build Init plugin is currently incubating. Please be aware that the DSL and other configuration may
changein later Gradle versions.

The Gradle Build Init plugin can be used to bootstrap the process of creating a new Gradle build. 1t supports
creating brand new projects of different types as well as converting existing builds (e.g. An Apache Maven
build) to be Gradle builds.

Gradle plugins typically need to be applied to a project before they can be used (see Section 21.3, “Applying
plugins’). The Build Init plugin is an automatically applied plugin, which means you do not need to apply it
explicitly. To use the plugin, simply execute the task named i ni t where you would like to create the Gradle
build. Thereis no need to create a“stub” bui | d. gr adl e filein order to apply the plugin.

It also leverages the wr apper task from the Wrapper plugin (see Chapter 48, Wrapper Plugin), which means
that the Gradle Wrapper will also be installed into the project.

47.1. Tasks

The plugin adds the following tasks to the project:

Table 47.1. Build I nit plugin - tasks

Task name Dependson Type Description
init wr apper InitBuild GeneratesaGradle project.
wr apper - W apper Generates Gradle wrapper files.

47.2. What to set up

Thei ni t supports different build setup types. The type is specified by supplying a - - t ype argument value.
For example, to create a Java library project simply execute: gradl e init --type java-library.

If a--type parameter is not supplied, Gradle will attempt to infer the type from the environment. For
example, it will infer atype value of “ponf if it findsapom xm to convert to a Gradle build.

If the type could not be inferred, the type “basi ¢” will be used.

Page 248 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.buildinit.tasks.InitBuild.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

All build setup typesinclude the setup of the Gradle Wrapper.

47.3. Build init types

Asthis plugin is currently incubating, only afew build init types are currently supported. More types will
be added in future Gradle rel eases.

47.3.1. “pont (Maven conversion)

The“poni type can be used to convert an Apache Maven build to a Gradle build. This works by converting the
POM to one or more Gradle files. It is only able to be used if thereisavalid “pom xm " file in the directory
that thei ni t task isinvoked in. Thistype will be automatically inferred if such afile exists.

The Maven conversion implementation was inspired by the maven2gradle tool that was originally developed by
Gradle community members.

The conversion process has the following features:

® Useseffective POM and effective settings (support for POM inheritance, dependency management,
properties)

® Supports both single module and multimodul e projects

® Supports custom module names (that differ from directory names)

® Generates general metadata - id, description and version

* Applies maven, java and war plugins (as needed)

® Supports packaging war projects asjarsif needed

® Generates dependencies (both external and inter-modul €)

® Generates download repositories (inc. local Maven repository)

® Adjusts Java compiler settings

® Supports packaging of sources and tests

® Supports TestNG runner

® Generates global exclusions from Maven enforcer plugin settings

47.3.2.% ava-| i brary”
The“j ava-1i brary” build init typeis not inferable. It must be explicitly specified.
It has the following features:

® Usesthe“j ava” plugin

® Usesthe“mavenCent ral ” dependency repository

® Uses JUnit for testing

® Hasdirectoriesin the conventional locations for source code

® Contains asample class and unit test, if there are no existing source or test files

Page 249 of 448

https://github.com/jbaruch/maven2gradle
http://junit.org

47.33.“scal a-library”

The“scal a- | i brary” build init typeisnot inferable. It must be explicitly specified.
It has the following features:

® Usesthe“scal a” plugin

® Usesthe“mavenCent r al ” dependency repository

® UsesScaa2.10

® Uses ScalaTest for testing

® Hasdirectoriesin the conventional locations for source code

® Contains a sample scala class and an associated ScalaTest test suite, if there are no existing source or test
files

47.3.4.“groovy-library”

The“groovy-1i brary” buildinit typeis not inferable. It must be explicitly specified.
It has the following features:

® Usesthe“groovy” plugin

® Usesthe“rmavenCent r al ” dependency repository

® UsesGroovy 2.X

® Uses Spock testing framework for testing

® Hasdirectoriesin the conventional locations for source code

® Contains a sample Groovy class and an associated Spock specification, if there are no existing source or test
files

47.3.5. “basic”

The“basi c¢” build init type isuseful for creating afresh new Gradle project. It createsasample bui | d. gr adl e
file, with comments and links to help get started.

Thistypeis used when no type was explicitly specified, and no type could be inferred.

Page 250 of 448

http://www.scalatest.org
http://code.google.com/p/spock/

43

Wrapper Plugin

The wrapper plugin is currently incubating. Please be aware that the DSL and other configuration may
changein later Gradle versions.

The Gradle wrapper plugin alows the generation of Gradle wrapper files by adding a W apper task, that
generates all files needed to run the build using the Gradle Wrapper. Details about the Gradle Wrapper can be
found in Chapter 62, The Gradle Wrapper.

48.1. Usage

Without modifying the bui | d. gr adl e file, the wrapper plugin can be auto-applied to the root project of the
current build by running “gr adl e wr apper” from the command line. This applies the plugin if no task
named wr apper isalready defined in the build.

48.2. Tasks

The wrapper plugin adds the following tasks to the project:

Table 48.1. Wrapper plugin - tasks

Task name Dependson Type Description

wr apper - W apper Generates Gradle wrapper files.

Page 251 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.wrapper.Wrapper.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

49

The Build Dashboard Plugin

The build dashboard plugin is currently incubating. Please be aware that the DSL and other configuration
may changein later Gradle versions.

The Build Dashboard plugin can be used to generate a single HTML dashboard that provides a single point of
access to all of the reports generated by a build.

49.1. Usage

To use the Build Dashboard plugin, include the following in your build script:

Example 49.1. Using the Build Dashboard plugin
buil d. gradl e

apply plugin: 'build-dashboard

Applying the plugin adds the bui | dDashboar d task to your project. The task aggregates the reports for all
tasks that implement the Repor t i ng interface from all projects in the build. It is typicaly only applied to the
root project.

The bui | dDashboar d task does not depend on any other tasks. It will only aggregate the reporting tasks that
are independently being executed as part of the build run. To generate the build dashboard, simply include this
task in the list of tasks to execute. For example, “gr adl e bui | dDashboard bui | d” will generate a
dashboard for al of the reporting tasks that are dependents of the bui | d task.

49.2. Tasks

The Build Dashboard plugin adds the following task to the project:

Page 252 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.reporting.Reporting.html

Table 49.1. Build Dashboard plugin - tasks

Task name Depends Type Description
on
bui | dDashboar d - Gener at eBui | dDashboar d Generates build dashboard
report.

49.3. Project layout

The Build Dashboard plugin does not require any particular project layout.

49.4. Dependency management

The Build Dashboard plugin does not define any dependency configurations.

49.5. Configuration

Y ou can influence the location of build dashboard plugin generation via Repor t i ngExt ensi on.

Page 253 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.reporting.GenerateBuildDashboard.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.reporting.ReportingExtension.html

50

The Java Gradle Plugin Development Plugin

The Java Gradle plugin development plugin is currently incubating. Please be aware that the DSL and
other configuration may changein later Gradle versions.

The Java Gradle Plugin development plugin can be used to assist in the development of Gradle plugins. It
automatically applies the Java plugin, adds the gr adl eApi () dependency to the compile configuration and
performs validation of plugin metadataduring j ar task execution.

50.1. Usage

To use the Java Gradle Plugin Development plugin, include the following in your build script:

Example 50.1. Using the Java Gradle Plugin Development plugin

buil d. gradl e
apply plugin: 'java-gradl e-plugin'

Applying the plugin automatically applies the Java plugin and adds the gr adl eApi () dependency to the
compile configuration. It also decoratesthej ar task with validations.

The following validations are performed:

® Thereisaplugin descriptor defined for the plugin.
® The plugin descriptor containsan i nmpl enent at i on- cl ass property.
®* Thei npl enent ati on- cl ass property references avalid classfilein the jar.

Any failed validations will result in awarning message.

Page 254 of 448

5l

Dependency M anagement

51.1. Introduction

Dependency management is a critical feature of every build, and Gradle has placed an emphasis on offering
first-class dependency management that is both easy to understand and compatible with a wide variety of
approaches. If you are familiar with the approach used by either Maven or Ivy you will be delighted to learn that
Gradle is fully compatible with both approaches in addition to being flexible enough to support
fully-customized approaches.

Here are the major highlights of Gradle's support for dependency management:

* Transitive dependency management: Gradle gives you full control of your project's dependency tree.

* Support for non-managed dependencies: If your dependencies are simply filesin version control or a shared
drive, Gradle provides powerful functionality to support this.

* Support for custom dependency definitions.: Gradle's Module Dependencies give you the ability to describe
the dependency hierarchy in the build script.

¢ A fully customizable approach to Dependency Resolution: Gradle provides you with the ability to customize
resolution rules making dependency substitution easy.

* Full Compatibility with Maven and Ivy: If you have defined dependenciesin a Maven POM or an vy file,
Gradle provides seamless integration with arange of popular build tools.

® |ntegration with existing dependency management infrastructure: Gradle is compatible with both Maven
and vy repositories. If you use Archiva, Nexus, or Artifactory, Gradle is 100% compatible with all
repository formats.

With hundreds of thousands of interdependent open source components each with a range of versions and
incompatibilities, dependency management has a habit of causing problems as builds grow in complexity. When
a build's dependency tree becomes unwieldy, your build tool shouldn't force you to adopt a single, inflexible
approach to dependency management. A proper build system has to be designed to be flexible, and Gradle can
handle any situation.

Page 255 of 448

51.1.1. Flexible dependency management for migrations

Dependency management can be particularly challenging during a migration from one build system to another.
If you are migrating from atool like Ant or Maven to Gradle, you may be faced with some difficult situations.
For example, one common pattern is an Ant project with version-less jar files stored in the filesystem. Other
build systems require a wholesale replacement of this approach before migrating. With Gradle, you can adapt
your new build to any existing source of dependencies or dependency metadata. This makes incremental
migration to Gradle much easier than the aternative. On most large projects, build migrations and any change to
development process is incremental because most organizations can't afford to stop everything and migrate to a
build tool's idea of dependency management.

Even if your project is using a custom dependency management system or something like an Eclipse .classpath
file as master data for dependency management, it is very easy to write a Gradle plugin to use this data in
Gradle. For migration purposes this is a common technique with Gradle. (But, once you've migrated, it might be
agood ideato move away from a.classpath file and use Gradle's dependency management features directly.)

51.1.2. Dependency management and Java

It isironic that in alanguage known for its rich library of open source components that Java has no concept of
libraries or versions. In Java, there is no standard way to tell the VM that you are using version 3.0.5 of
Hibernate, and there is no standard way to say that f oo- 1. 0. j ar dependsonbar - 2. 0. j ar . Thishasled to
external solutions often based on build tools. The most popular ones at the moment are Maven and Ivy. While
Maven provides a complete build system, Ivy focuses solely on dependency management.

Both tools rely on descriptor XML files, which contain information about the dependencies of a particular jar.
Both also use repositories where the actua jars are placed together with their descriptor files, and both offer
resolution for conflicting jar versions in one form or the other. Both have emerged as standards for solving
dependency conflicts, and while Gradle originally used Ivy under the hood for its dependency management.
Gradle has replaced this direct dependency on lvy with a native Gradle dependency resolution engine which
supports a range of approaches to dependency resolution including both POM and Ivy descriptor files.

51.2. Dependency Management Best Practices

While Gradle has strong opinions on dependency management, the tool gives you a choice between two options:
follow recommended best practices or support any kind of pattern you can think of. This section outlines the
Gradle project's recommended best practices for managing dependencies.

No matter what the language, proper dependency management is important for every project. From a complex
enterprise application written in Java depending on hundreds of open source libraries to the ssmplest Clojure
application depending on a handful of libraries, approaches to dependency management vary widely and can
depend on the target technology, the method of application deployment, and the nature of the project. Projects
bundled as reusable libraries may have different requirements than enterprise applications integrated into much
larger systems of software and infrastructure. Despite this wide variation of requirements, the Gradle project
recommends that all projects follow this set of corerules:

Page 256 of 448

51.2.1. Put the Version in the Filename (Version the jar)

The version of alibrary must be part of the filename. While the version of ajar is usually in the Manifest file, it
isn't readily apparent when you are inspecting a project. If someone asks you to look at a collection of 20 jar
files, which would you prefer? A collection of files with names like conmons- beanutil s-1.3.jar ora
collection of files with names like spri ng. j ar ? If dependencies have file names with version humbers you
can quickly identify the versions of your dependencies.

If versions are unclear you can introduce subtle bugs which are very hard to find. For example there might be a
project which uses Hibernate 2.5. Think about a developer who decides to install version 3.0.5 of Hibernate on
her machine to fix acritical security bug but forgets to notify othersin the team of this change. She may address
the security bug successfully, but she also may have introduced subtle bugs into a codebase that was using a
now-deprecated feature from Hibernate. Weeks later there is an exception on the integration machine which
can't be reproduced on anyone's machine. Multiple developers then spend days on this issue only finally
realising that the error would have easy to uncover if they knew that Hibernate had been upgraded from 2.5 to
3.0.5.

Versions in jar names increase the expressiveness of your project and make them easier to maintain. This
practice also reduces the potential for error.

51.2.2. Manage transitive dependencies

Transitive dependency management is a technique that enables your project to depend on libraries which, in
turn, depend on other libraries. This recursive pattern of transitive dependencies resultsin atree of dependencies
including your project's first-level dependencies, second-level dependencies, and so on. If you don't model your
dependencies as a hierarchical tree of first-level and second-level dependenciesit is very easy to quickly lose
control over an assembled mess of unstructured dependencies. Consider the Gradle project itself, while Gradle
only has a few direct, first-level dependencies, when Gradle is compiled it needs more than one hundred
dependencies on the classpath. On a far larger scale, Enterprise projects using Spring, Hibernate, and other
libraries, alongside hundreds or thousands of internal projects, can result in very large dependency trees.

When these large dependency trees need to change, you'll often have to solve some dependency version
conflicts. Say one open source library needs one version of alogging library and a another uses an aternative
version. Gradle and other build tools all have the ability to resolve conflicts, but what differentiates Gradle is the
control it gives you over transitive dependencies and conflict resolution.

While you could try to manage this problem manually, you will quickly find that this approach doesn't scale. If
you want to get rid of afirst level dependency you really can't be sure which other jars you should remove. A
dependency of afirst level dependency might also be afirst level dependency itself, or it might be a transitive
dependency of yet another first level dependency. If you try to manage transitive dependencies yourself, the end
of the story is that your build becomes brittle: no one dares to change your dependencies because the risk of
breaking the build is too high. The project classpath becomes a complete mess, and, if a classpath problem
arises, hell on earth invites you for aride.

NOTE:In one project, we found a mystery LDAP related jar in the classpath. No code referenced this jar
and there was no connection to the project. No one could figure out what the jar was for, until it was
removed from the build and the application suffered massive performance problems whenever it

Page 257 of 448

attempted to authenticate to LDAP. This mystery jar was a necessary transitive, fourth-level dependency
that was easy to miss because no one had bothered to use managed transitive dependencies.

Gradle offers you different ways to express first-level and transitive dependencies. With Gradle you can mix
and match approaches; for example, you could store your jars in an SCM without XML descriptor files and still
use transitive dependency management.

51.2.3. Resolve version conflicts

Conflicting versions of the same jar should be detected and either resolved or cause an exception. If you don't
use transitive dependency management, version conflicts are undetected and the often accidental order of the
classpath will determine what version of a dependency will win. On a large project with many developers
changing dependencies, successful builds will be few and far between as the order of dependencies may directly
affect whether a build succeeds or fails (or whether a bug appears or disappears in production).

If you haven't had to deal with the curse of conflicting versions of jars on a classpath, here is a small anecdote of
the fun that awaits you. In alarge project with 30 submodules, adding a dependency to a subproject changed the
order of a classpath, swapping Spring 2.5 for an older 2.4 version. While the build continued to work,
devel opers were starting to notice all sorts of surprising (and surprisingly awful) bugs in production. Worse yet,
this unintentional downgrade of Spring introduced several security vulnerabilities into the system, which now
required a full security audit throughout the organization.

In short, version conflicts are bad, and you should manage your transitive dependencies to avoid them. You
might also want to learn where conflicting versions are used and consolidate on a particular version of a
dependency across your organization. With a good conflict reporting tool like Gradle, that information can be
used to communicate with the entire organization and standardize on a single version. If you think version
conflicts don't happen to you, think again. It is very common for different first-level dependenciesto rely on a
range of different overlapping versions for other dependencies, and the VM doesn't yet offer an easy way to
have different versions of the same jar in the classpath (see Section 51.1.2, “ Dependency management and Java’

).

Gradle offers the following conflict resolution strategies:

* Newest: The newest version of the dependency is used. Thisis Gradle's default strategy, and is often an
appropriate choice as long as versions are backwards-compatible.

® Fail: A version conflict resultsin abuild failure. This strategy requires all version conflicts to be resolved
explicitly in the build script. See Resol ut i onSt r at egy for details on how to explicitly choose a
particular version.

While the strategies introduced above are usually enough to solve most conflicts, Gradle provides more
fine-grained mechanisms to resolve version conflicts:

* Configuring afirst level dependency as forced. This approach is useful if the dependency in conflict is
aready afirst level dependency. See examplesin DependencyHandl er .

® Configuring any dependency (transitive or not) as forced. This approach is useful if the dependency in
conflict is atransitive dependency. It also can be used to force versions of first level dependencies. See
examplesin Resol uti onStr at egy

® Dependency resolve rules are an incubating feature introduced in Gradle 1.4 which give you fine-grained

Page 258 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.ResolutionStrategy.html

control over the version selected for a particular dependency.

To deal with problems due to version conflicts, reports with dependency graphs are also very helpful. Such
reports are another feature of dependency management.

51.2.4. Use Dynamic Versions and Changing Modules

There are many situations when you want to use the latest version of a particular dependency, or the latest in a
range of versions. This can be a requirement during development, or you may be developing a library that is
designed to work with a range of dependency versions. You can easily depend on these constantly changing
dependencies by using a dynamic version. A dynamic version can be either aversion range (e.g. 2. +) or it can
be a placeholder for the latest version available (e.g. | at est . i nt egrati on).

Alternatively, sometimes the module you reguest can change over time, even for the same version. An example
of this type of changing module is a Maven SNAPSHOT module, which aways points at the latest artifact
published. In other words, a standard Maven snapshot is a module that never stands still so to speak, it is a
“changing modul€e”.

The main difference between a dynamic version and a changing module is that when you resolve a dynamic
version, you'll get the real, static version as the module name. When you resolve a changing module, the
artifacts are named using the version you requested, but the underlying artifacts may change over time.

By default, Gradle caches dynamic versions and changing modules for 24 hours. Y ou can override the default
cache modes using command line options. You can change the cache expiry times in your build using the
resolution strategy (see Section 51.9.3, “Fine-tuned control over dependency caching”).

51.3. Dependency configurations

In Gradle dependencies are grouped into configurations. Configurations have a name, a number of other
properties, and they can extend each other. Many Gradle plugins add pre-defined configurations to your project.
The Java plugin, for example, adds some configurations to represent the various classpaths it needs. see
Section 23.5, “Dependency management” for details. Of course you can add custom configurations on top of
that. There are many use cases for custom configurations. This is very handy for example for adding
dependencies not needed for building or testing your software (e.g. additional JDBC drivers to be shipped with
your distribution).

A project's configurations are managed by a confi gurati ons object. The closure you pass to the
configurations object is applied against its API. To learn more about this APl have a look at
Confi gur ati onCont ai ner.

To define a configuration:

Example 51.1. Definition of a configuration

bui | d. gradl e

configurations {

conpi |l e
}

Page 259 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.ConfigurationContainer.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.ConfigurationContainer.html

To access a configuration:;

Example 51.2. Accessing a configuration

buil d. gradl e

println configurations. conpil e. nanme

println configurations[' conpile'].name

To configure a configuration:

Example 51.3. Configuration of a configuration
buil d. gradl e

configurations {
conpi l e {
description = 'conpil e cl asspath'
transitive = true
}
runtine {
ext endsFrom conpi |l e
}
}

configurations. conpile {
description = 'conpile classpath'

}

51.4. How to declare your dependencies

There are several different types of dependencies that you can declare:
Table51.1. Dependency types

Type Description

External module dependency
Project dependency
File dependency

Client module dependency

Gradle API dependency

Local Groovy dependency

A dependency on an external module in some repository.
A dependency on another project in the same build.
A dependency on a set of files on the local filesystem.

A dependency on an external module, where the artifacts are located in
some repository but the module meta-datais specified by the local build.

Y ou use thiskind of dependency when you want to override the meta-data
for the module.

A dependency on the API of the current Gradle version. Y ou use this kind
of dependency when you are devel oping custom Gradle plugins and task
types.

A dependency on the Groovy version used by the current Gradle version.

Y ou use this kind of dependency when you are developing custom Gradle
plugins and task types.

Page 260 of 448

51.4.1. External module dependencies

External module dependencies are the most common dependencies. They refer to a module in an external
repository.

Example 51.4. M odule dependencies
buil d. gradl e

dependenci es {
runtime group: 'org.springframework', name: 'spring-core', version: '2.5
runtine 'org.springframework: spring-core: 2.5
"org. springframewor k: spring-aop: 2. 5'
runti me(
[group: 'org.springframework', name: 'spring-core', version: '2.5],
[group: 'org.springframework', nane: 'spring-aop', version: '2.5']

)
runtime(' org. hi bernate: hi bernate: 3.0.5") {
transitive = true
}
runtine group: 'org.hibernate', nanme: 'hibernate', version:
runtime(group: 'org.hibernate', name: 'hibernate', version:
transitive = true

}

Seethe DependencyHandl er classinthe APl documentation for more examples and a compl ete reference.

Gradle provides different notations for module dependencies. There is a string notation and a map notation. A
module dependency has an APl which allows further configuration. Have a look at
Ext er nal Modul eDependency to learn all about the API. This API provides properties and configuration
methods. Viathe string notation you can define a subset of the properties. With the map notation you can define
al properties. To have access to the complete API, either with the map or with the string notation, you can
assign a single dependency to a configuration together with a closure.

If you declare a module dependency, Gradle looks for a module descriptor file (pom xm ori vy. xm) in the
repositories. If such amodule descriptor file exists, it is parsed and the artifacts of thismodule (e.g. hi ber nat e- 3
) as well asits dependencies (e.g. cglib) are downloaded. If no such module descriptor file exists, Gradle looks
for afilecalled hi ber nat e- 3. 0. 5. j ar to retrieve. In Maven, a module can have one and only one artifact.

In Gradle and Ivy, amodule can have multiple artifacts. Each artifact can have a different set of dependencies.

51.4.1.1. Depending on modules with multiple artifacts

Asmentioned earlier, a Maven module has only one artifact. Hence, when your project depends on a Maven
module, it's obvious what its artifact is. With Gradle or Ivy, the case is different. Ivy's dependency descriptor (i vy. .
) can declare multiple artifacts. For more information, see the Ivy referencefor i vy. xmi . In Gradle, when you
declare adependency on an Ivy module, you actually declare a dependency on the def aul t configuration of
that module. So the actual set of artifacts (typically jars) you depend on is the set of artifacts that are associated
with the def aul t configuration of that module. Here are some situations where this matters:

* Thedef aul t configuration of a module contains undesired artifacts. Rather than depending on the whole

configuration, a dependency on just the desired artifacts is declared.

Page 261 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html

* Thedesired artifact belongs to a configuration other than def aul t . That configuration is explicitly named
as part of the dependency declaration.

There are other situations where it is necessary to fine-tune dependency declarations. Please see the
DependencyHandl er classinthe APl documentation for examples and a complete reference for declaring
dependencies.

51.4.1.2. Artifact only notation

As said above, if no module descriptor file can be found, Gradle by default downloads a jar with the name of the
module. But sometimes, even if the repository contains module descriptors, you want to download only the
artifact jar, without the dependencies. [14] And sometimes you want to download a zip from a repository, that
does not have module descriptors. Gradle provides an artifact only notation for those use cases - simply prefix
the extension that you want to be downloaded with' @ sign:

Example 51.5. Artifact only notation
buil d. gradle

dependenci es {
runtime "org.groovy:groovy:2.2.0@ar"

runtime group: 'org.groovy', nane: 'groovy', version: '2.2.0",

An artifact only notation creates a module dependency which downloads only the artifact file with the specified
extension. Existing module descriptors are ignored.

51.4.1.3. Classifiers

The Maven dependency management has the notion of classifiers. 15 Gradle supports this. To retrieve
classified dependencies from a Maven repository you can write:

Example 51.6. Dependency with classifier

buil d. gradl e

conpile "org.gradle.test.classifiers:service:1.0:jdkl5@ar"

ot her Conf group: 'org.gradle.test.classifiers', name: 'service', version:

As can be seen in thefirst line above, classifiers can be used together with the artifact only notation.

It is easy to iterate over the dependency artifacts of a configuration:

Page 262 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html

Example51.7. Iterating over a configuration
buil d. gradl e

task listJars << {
configurations.conpile.each { File file -> println file.nanme }

}

Outputof gradl e -q listJars

> gradle -q listJars

hi bernate-core-3.6.7.Final.jar
antlr-2.7.6.jar

conmons-col | ections-3.1.jar

domdj-1.6.1.jar

hi ber nat e- cormons-annotati ons-3.2.0.Final.jar
hi bernate-jpa-2.0-api-1.0.1.Final.jar
jta-1.1.jar

slfd4j-api-1.6.1.jar

51.4.2. Client module dependencies

Client module dependencies allow you to declare transitive dependencies directly in the build script. They area
replacement for a module descriptor in an external repository.

Example 51.8. Client module dependencies - transitive dependencies
buil d. gradl e

dependenci es {
runti me nmodul e("org. codehaus. groovy: groovy: 2. 3. 6") {
dependency(" commons-cli:comons-cli:1.0") {
transitive = fal se

}

nmodul e(group: 'org.apache.ant', nane: 'ant', version: '1.9.3") {
dependenci es "org. apache. ant: ant-| auncher: 1.9.3@ar",
"org.apache.ant:ant-junit:1.9. 3"

This declares a dependency on Groovy. Groovy itself has dependencies. But Gradle does not ook for an XML
descriptor to figure them out but gets the information from the build file. The dependencies of a client module
can be normal module dependencies or artifact dependencies or another client module. Also look at the API
documentation for the Cl i ent Mbdul e class.

In the current release client modules have one limitation. Let's say your project is a library and you want this
library to be uploaded to your company's Maven or |vy repository. Gradle uploads the jars of your project to the
company repository together with the XML descriptor file of the dependencies. If you use client modules the
dependency declaration in the XML descriptor file is not correct. We will improve this in a future release of
Gradle.

Page 263 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/ClientModule.html

51.4.3. Project dependencies

Gradle distinguishes between external dependencies and dependencies on projects which are part of the same
multi-project build. For the latter you can declare Project Dependencies.

Example 51.9. Project dependencies

buil d. gradl e

dependenci es {
conpi l e project(':shared")

}

For more information see the APl documentation for Pr oj ect Dependency.

Multi-project builds are discussed in Chapter 57, Multi-project Builds.

51.4.4. File dependencies

File dependencies alow you to directly add a set of files to a configuration, without first adding them to a
repository. This can be useful if you cannot, or do not want to, place certain files in a repository. Or if you do
not want to use any repositories at all for storing your dependencies.

To add some files as a dependency for a configuration, you simply pass a file collection as a dependency:

Example 51.10. File dependencies

bui I d. gradl e

dependenci es {
runtine files('libs/a.jar', 'libs/b.jar")

runtime fileTree(dir: '"libs', include: "*.jar")

File dependencies are not included in the published dependency descriptor for your project. However, file
dependencies are included in transitive project dependencies within the same build. This means they cannot be
used outside the current build, but they can be used with the same build.

Y ou can declare which tasks produce the files for afile dependency. Y ou might do this when, for example, the
files are generated by the build.

Page 264 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/ProjectDependency.html

Example 51.11. Generated file dependencies
buil d. gradl e

dependenci es {
conmpile files("$buildDir/classes") {
builtBy 'conpil e’
}

}

task conpile << {
println 'conpiling classes’

}

task |ist(dependsOn: configurations.conpile) << {
println "classpath = ${configurations.conpile.collect {File file -> file.nane}

}

Outputof gradle -q Ii st
> gradle -q |ist

conpi | i ng cl asses
cl asspath = [cl asses]

51.4.5. Gradle APl Dependency

You can declare a dependency on the APl of the current version of Gradle by using the
DependencyHandl er. gradl eApi () method. This is useful when you are developing custom Gradle
tasks or plugins.

Example 51.12. Gradle API dependencies

bui I d. gradl e

dependenci es {
conpi | e gradl eApi ()

}

51.4.6. Local Groovy Dependency

You can declare a dependency on the Groovy that is distributed with Gradle by using the
DependencyHandl er. | ocal Groovy() method. This is useful when you are developing custom Gradle
tasks or plugins in Groovy.

Example 51.13. Gradle's Groovy dependencies

bui I d. gradl e

dependenci es {
conpi |l e | ocal G oovy()

}

Page 265 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:gradleApi()
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:gradleApi()
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:localGroovy()
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:localGroovy()

51.4.7. Excluding transitive dependencies

Y ou can exclude a transitive dependency either by configuration or by dependency:

Example 51.14. Excluding transitive dependencies
buil d. gradl e

configurations {
conpi | e. excl ude nodul e: ' conmons
al | *. exclude group: 'org.gradle.test.excludes', nodule: 'reports'

}

dependenci es {
conpil e("org. gradl e.test.excludes:api:1.0") {
excl ude nodul e: ' shared

}

If you define an exclude for a particular configuration, the excluded transitive dependency will be filtered for all
dependencies when resolving this configuration or any inheriting configuration. If you want to exclude a
transitive dependency from all your configurations you can use the Groovy spread-dot operator to express this
in a concise way, as shown in the example. When defining an exclude, you can specify either only the
organization or only the module name or both. Also look at the API documentation of the Dependency and
Conf i gur ati on classes.

Not every transitive dependency can be excluded - some transitive dependencies might be essential for correct
runtime behavior of the application. Generally, one can exclude transitive dependencies that are either not
required by runtime or that are guaranteed to be available on the target environment/platform.

Should you exclude per-dependency or per-configuration? It turns out that in the majority of cases you want to
use the per-configuration exclusion. Here are some typical reasons why one might want to exclude a transitive
dependency. Bear in mind that for some of these use cases there are better solutions than exclusions!

® The dependency is undesired due to licensing reasons.

® The dependency is not available in any remote repositories.

® The dependency is not needed for runtime.

® The dependency has a version that conflicts with a desired version. For that use case please refer to
Section 51.2.3, “Resolve version conflicts’ and the documentation on Resol ut i onSt r at egy for a
potentially better solution to the problem.

Basically, in most of the cases excluding the transitive dependency should be done per configuration. This way
the dependency declaration is more explicit. It is also more accurate because a per-dependency exclude rule
does not guarantee the given transitive dependency does not show up in the configuration. For example, some
other dependency, which does not have any exclude rules, might pull in that unwanted transitive dependency.

Other examples of dependency exclusions can be found in the reference for the Modul eDependency or
DependencyHandl er classes.

Page 266 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/Dependency.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.Configuration.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.Configuration.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/ModuleDependency.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html

51.4.8. Optional attributes

All attributes for a dependency are optional, except the name. Which attributes are required for actually finding
dependencies in the repository will depend on the repository type. See Section 51.6, “Repositories’. For
example, if you work with Maven repositories, you need to define the group, name and version. If you work
with filesystem repositories you might only need the name or the name and the version.

Example 51.15. Optional attributes of dependencies

buil d. gradl e

dependenci es {
runtinme ":junit:4.10", ":testng"

runti me name: 'testng'

Y ou can aso assign collections or arrays of dependency notations to a configuration:

Example 51.16. Collections and arrays of dependencies
bui I d. gradl e

Li st groovy = ["org.codehaus. groovy: groovy-all:2.3.6@ar",
"commons-cli:comons-cli: 1. 0@ar",
"org.apache.ant:ant: 1. 9.3@ar"]

Li st hi bernate = ['org. hi bernate: hi bernate: 3.0.5@ar",

' sonegroup: soneorg: 1. 0@ar ']
dependenci es {
runti ne groovy, hibernate

}

51.4.9. Dependency configurations

In Gradle a dependency can have different configurations (as your project can have different configurations). If
you don't specify anything explicitly, Gradle uses the default configuration of the dependency. For dependencies
from a Maven repository, the default configuration is the only possibility anyway. If you work with Ivy
repositories and want to declare a non-default configuration for your dependency you have to use the map
notation and declare:

Example 51.17. Dependency configurations
buil d. gradl e

dependenci es {
runtime group: 'org.somegroup', nane: 'sonedependency', version: '1.0', config

}

To do the same for project dependencies you need to declare:

Page 267 of 448

Example 51.18. Dependency configurations for project
buil d. gradl e

dependenci es {

conpil e project(path: ':api', configuration: 'spi')

}

51.4.10. Dependency reports

You can generate dependency reports from the command line (see Section 11.6.4, “Listing project
dependencies’). With the help of the Project report plugin (see Chapter 41, The Project Report Plugin) such a
report can be created by your build.

Since Gradle 1.2 there is also a new programmatic APl to access the resolved dependency information. The
dependency reports (see the previous paragraph) are using this API under the covers. The API lets you walk the
resolved dependency graph and provides information about the dependencies. In future releases the API will
grow to provide more information about the resolution result. For more information about the API please refer
to the Javadocs on Resol vabl eDependenci es. get Resol uti onResul t (). Potential usages of the
Resol uti onResul t API:

® Creation of advanced dependency reports tailored to your use case.
* Enabling the build logic to make decisions based on the content of the dependency graph.

51.5. Working with dependencies

For the exampl es below we have the following dependencies setup:

Example 51.19. Configur ation.copy
buil d. gradle

configurations {
sealife
alllife

}

dependenci es {
sealife "sea. manmal s:orca: 1. 0", "sea.fish:shark:1.0", "sea.fish:tuna:1.0"
alllife configurations.sealife
alllife "air.birds: al batross: 1. 0"

The dependencies have the following transitive dependencies:
shark-1.0 -> seal-2.0, tuna-1.0
orca-1.0 -> seal-1.0

tuna-1.0 -> herring-1.0

Page 268 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/ResolvableDependencies.html#getResolutionResult()
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/result/ResolutionResult.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/result/ResolutionResult.html

Y ou can use the configuration to access the declared dependencies or a subset of those:

Example 51.20. Accessing declared dependencies

buil d. gradl e

task dependenci es << {
configurations.alllife.dependencies.each { dep -> println dep.nane }
println()
configurations.alllife.all Dependenci es.each { dep -> println dep. nane }

println()
configurations.alllife.all Dependencies.findAll { dep -> dep.nane != 'orca' }
.each { dep -> println dep.nane }

Output of gr adl e -q dependenci es

> gradl e -qg dependencies
al batross

al batross
orca
shar k
tuna

al bat ross
shar k
tuna

The dependenci es task returns only the dependencies belonging explicitly to the configuration. The
al | Dependenci es task includes the dependencies from extended configurations.

To get the library files of the configuration dependencies you can do:

Example 51.21. Configuration.files
buil d. gradl e

task all Files << {
configurations.sealife.files.each { file ->
println file.nanme

}

Outputof gradle -q allFiles

> gradle -q allFiles
orca-1.0.jar
shark-1.0.jar
tuna-1.0.jar
herring-1.0.jar
seal-2.0.jar

Sometimes you want the library files of a subset of the configuration dependencies (e.g. of a single
dependency).

Page 269 of 448

Example 51.22. Configuration.fileswith spec

bui I d. gradl e

task files << {
configurations.sealife.files { dep -> dep.name == 'orca' }.each { file ->

println file.name

}

Outputof gradle -q files

> gradle -q files
orca-1.0.jar
seal -2.0.jar

The Confi guration. fil es method always retrieves al artifacts of the whole configuration. It then filters
the retrieved files by specified dependencies. As you can see in the example, transitive dependencies are
included.

You can also copy a configuration. You can optionally specify that only a subset of dependencies from the
original configuration should be copied. The copying methods come in two flavors. The copy method copies
only the dependencies belonging explicitly to the configuration. The copyRecur si ve method copies all the
dependencies, including the dependencies from extended configurations.

Example 51.23. Configuration.copy

bui I d. gradl e

task copy << {
configurations.alllife.copyRecursive { dep -> dep.nane != '"orca' }
.al | Dependenci es. each { dep -> println dep. nane }

println()
configurations.alllife.copy().allDependencies
.each { dep -> println dep. nane }

Output of gr adl e -qg copy

> gradle -qg copy
al batross

shar k

tuna

al batross

It isimportant to note that the returned files of the copied configuration are often but not always the same than
the returned files of the dependency subset of the original configuration. In case of version conflicts between
dependencies of the subset and dependencies not belonging to the subset the resolve result might be different.

Page 270 of 448

Example 51.24. Configuration.copy vs. Configuration.files
buil d. gradl e

task copyVsFiles << {
configurations. sealife.copyRecursive { dep -> dep.name == 'orca' }
.each { file -> println file.nane }

println()
configurations.sealife.files { dep -> dep.nane == 'orca' }
.each { file -> println file.name }

Output of gr adl e -q copyVsFil es

> gradle -q copyVsFiles
orca-1.0.jar
seal-1.0.jar

orca-1.0.jar
seal-2.0.jar

In the example above, or ca has a dependency on seal - 1. 0 whereas shar k has a dependency on
seal - 2. 0. The origina configuration has therefore a version conflict which is resolved to the newer
seal - 2. 0 version. Thef i | es method therefore returns seal - 2. 0 as atransitive dependency ofor ca. The
copied configuration only has or ca as a dependency and therefore there is no version conflict and seal - 1. 0
isreturned as atransitive dependency.

Once a configuration is resolved it is immutable. Changing its state or the state of one of its dependencies will
cause an exception. You can always copy a resolved configuration. The copied configuration is in the
unresolved state and can be freshly resolved.

To learn more about the API of the configuration class see the APl documentation: Conf i gur ati on.

51.6. Repositories

Gradle repository management, based on Apache Ivy, gives you a lot of freedom regarding repository layout
and retrieval policies. Additionally Gradle provides various convenience method to add pre-configured
repositories.

You may configure any number of repositories, each of which is treated independently by Gradle. If Gradle
finds a module descriptor in a particular repository, it will attempt to download all of the artifacts for that
module from the same repository. Although module meta-data and modul e artifacts must be located in the same
repository, it is possible to compose a single repository of multiple URLS, giving multiple locations to search for
meta-data files and jar files.

There are several different types of repositories you can declare:

Page 271 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.Configuration.html

Table51.2. Repository types

Type Description
Maven central repository A pre-configured repository that looks for dependenciesin Maven Central.

Maven JCenter repository A pre-configured repository that looks for dependenciesin Bintray's JCenter.

Maven local repository A pre-configured repository that looks for dependencies in the local Maven
repository.

Maven repository A Maven repository. Can be located on the local filesystem or at some remote
location.

Ivy repository An lvy repository. Can be located on the local filesystem or at some remote
location.

Flat directory repository A simple repository on the local filesystem. Does not support any meta-data
formats.

51.6.1. Supported repository transport protocols

Maven and lvy repositories support the use of various transport protocols. At the moment the following
protocols are supported:

Table 51.3. Repository transport protocols

Type Authentication schemes
file none

http username/password

htt ps username/password
sftp username/password

To define a repository use the r eposi t ori es configuration block. Within the r eposi t ori es closure, a
Maven repository is declared with maven. An lvy repository is declared with i vy. The transport protocol is
part of the URL definition for a repository. The following build script demonstrates how to create a
HTTP-based Maven and Ivy repository:

Example 51.25. Declaring a Maven and I vy repository

bui I d. gradl e

repositories {
maven {
url "http://repo. nyconpany. conl maven2"

}

ivy {
url "http://repo. myconpany. com repo"
}

Page 272 of 448

If authentication is required for a repository, the relevant credentials can be provided. The following example
shows how to provide username/password-based authentication for SFTP repositories:

Example 51.26. Providing credentialsto a Maven and | vy repository
buil d. gradl e

repositories {
maven {
url "sftp://repo. myconpany. com 22/ maven2"
credentials {
user nane ' user'
password ' password’

}

ivy {
url "sftp://repo. myconpany.com 22/ repo"
credentials {
user nane ' user'
password ' password’

51.6.2. Maven central repository
To add the central Maven 2 repository (http://repol.maven.org/maven2) simply add this to your build script:
Example 51.27. Adding central Maven repository

bui I d. gradl e

repositories {

mavenCent ral ()

}

Now Gradle will look for your dependenciesin this repository.

Warning: Be aware that the central Maven 2 repository isHTTP only and HTTPS is not supported. If you need
a public HTTPS enabled central repository, you can use the JCenter public repository (see Section 51.6.3,
“Maven JCenter repository”).

51.6.3. Maven JCenter repository

Bintray's JCenter is an up-to-date collection of all popular Maven OSS artifacts, including artifacts published
directly to Bintray.

To add the JCenter Maven repository (https://jcenter.bintray.com) simply add this to your build script:

Page 273 of 448

http://repo1.maven.org/maven2
http://jcenter.bintray.com
http://bintray.com
https://jcenter.bintray.com

Example 51.28. Adding Bintray's JCenter Maven repository

bui I d. gradl e

repositories {

jcenter()

}

Now Gradle will look for your dependencies in the JCenter repository. jcenter() uses HTTPS to connect to the
repository. If you want to use HTTP you can configurej cent er () :

Example 51.29. Using Bintrays's JCenter with HTTP
buil d. gradl e
repositories {

jcenter {
url "http://jcenter.bintray.conm "

}

51.6.4. Local Maven repository

To use the local Maven cache as arepository you can do:

Example 51.30. Adding the local Maven cache asarepository
buil d. gradl e

repositories {
mavenLocal ()

}

Gradle uses the same logic as Maven to identify the location of your local Maven cache. If alocal repository
locationisdefinedinaset ti ngs. xnl , thislocation will beused. Theset ti ngs. xm in USER_HOVE/ . nP
takes precedence over the set ti ngs. xm in M2_HOVE/ conf . If nosettings. xm isavailable, Gradle
uses the default location USER_HQOVE/ . n2/ r eposi tory.

51.6.5. Maven repositories

For adding a custom Maven repository you can do:

Example 51.31. Adding custom Maven repository
buil d. gradl e

repositories {
maven {

url "http://repo. myconpany. conl maven2"

}

Sometimes a repository will have the POMs published to one location, and the JARs and other artifacts

Page 274 of 448

published at another location. To define such arepository, you can do:

Example 51.32. Adding additional Maven repositoriesfor JAR files

buil d. gradl e

repositories {
maven {
/1 Look for POV and artifacts, such as JARs, here
url "http://repo2. myconpany. conl maven2"

/'l Look for artifacts here if not found at the above | ocation
artifactUls "http://repo. nyconpany. conijars"
artifactUrls "http://repo. nyconpany. conijars2"

Gradle will look at the first URL for the POM and the JAR. If the JAR can't be found there, the artifact URLs
are used to look for JARs.

51.6.5.1. Accessing password protected Maven repositories
To access a Maven repository which uses basic authentication, you specify the username and password to use
when you define the repository:
Example 51.33. Accessing password protected Maven repository
buil d. gradl e

repositories {
maven {
credentials {
user nane 'user'

password ' password

}

url "http://repo. myconpany. conl maven2"

It is advisable to keep your username and password in gr adl e. pr operti es rather than directly in the build
file

51.6.6. Flat directory repository

If you want to use a (flat) filesystem directory as arepository, simply type:

Page 275 of 448

Example 51.34. Flat repository resolver
buil d. gradl e
repositories {

flatDir {
dirs "Iib'

}

flatDir {
dirs "lib1l", "lib2
}

This adds repositories which look into one or more directories for finding dependencies. If you only work with
flat directory resolvers you don't need to set al attributes of a dependency. See Section 51.4.8, “Optional
attributes’

51.6.7. vy repositories

51.6.7.1. Defining an vy repository with a standard layout
Example 51.35. I vy repository
bui I d. gradl e
repositories {

ivy {
url "http://repo. myconpany. com repo"
}

51.6.7.2. Defining a named layout for an vy repository

Y ou can specify that your repository conformsto the vy or Maven default layout by using a named layout.

Example 51.36. I vy repository with named layout
buil d. gradl e
repositories {

ivy {
url "http://repo. myconpany. com repo"

| ayout "nmaven"

Valid named layout values are ' gradle' (the default), 'naven’ and 'ivy'. See
IvyArtifact Repository.|layout () inthe APl documentation for details of these named layouts.

51.6.7.3. Defining custom pattern layout for an Ivy repository

To define an lvy repository with a non-standard layout, you can define a 'pattern’ layout for the repository:

Page 276 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html#org.gradle.api.artifacts.repositories.IvyArtifactRepository:layout(java.lang.String, groovy.lang.Closure)
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html#org.gradle.api.artifacts.repositories.IvyArtifactRepository:layout(java.lang.String, groovy.lang.Closure)

Example 51.37. Ivy repository with pattern layout

bui I d. gradl e

repositories {
vy {
url "http://repo. myconpany. com repo"
| ayout "pattern", {

artifact "[nodule]/[revision]/[type]/[artifact].[ext]"

To define an lvy repository which fetches lvy files and artifacts from different locations, you can define separate
patterns to use to locate the lvy files and artifacts:

Eacharti fact ori vy specified for arepository adds an additional pattern to use. The patterns are used in
the order that they are defined.

Example 51.38. Ivy repository with multiple custom patterns
buil d. gradl e

repositories {
vy {
url "http://repo. myconpany. com repo"
| ayout "pattern", {
artifact "3rd-party-artifacts/[organi sation]/[nodule]/[revision]/[arti/f
artifact "conpany-artifacts/[organisation]/[nodule]/[revision]/[artifad
ivy "ivy-files/[organisation]/[nodule]/[revision]/ivy.xm"

Optionally, arepository with pattern layout can have its ‘organisation’ part laid out in Maven style, with forward
slashes replacing dots as separators. For example, the organisation my. conpany would then be represented as ny/

Example 51.39. Ivy repository with Maven compatible layout
buil d. gradl e

repositories {
vy {
url "http://repo. myconpany. com repo"
| ayout "pattern", {
artifact "[organisation]/[nodule]/[revision]/[artifact]-[revision].[ex

n2conpati ble = true

Page 277 of 448

51.6.7.4. Accessing password protected Ivy repositories

To access an |vy repository which uses basic authentication, you specify the username and password to use
when you define the repository:

Example 51.40. vy repository

bui I d. gradl e

repositories {
vy {
url '"http://repo. myconpany. con
credentials {
user nane ' user'

password ' password'

51.6.8. Working with repositories

To access arepository:

Example 51.41. Accessing a repository
buil d. gradl e

println repositories.|ocal Repository. name
println repositories['!|ocal Repository'].name

To configure arepository:

Example 51.42. Configuration of arepository
buil d. gradl e

repositories {
flatDir {
nanme ' | ocal Repository
}
}
repositories {
| ocal Repository {
dirs '"lib
}
}

repositories.|ocal Repository {
dirs "Iib

}

51.6.9. More about Ivy resolvers

Gradle, thanksto Ivy under its hood, is extremely flexible regarding repositories:

Page 278 of 448

® There are many options for the protocol to communicate with the repository (e.g. filesystem, http, ssh, sftp
)

® The protocol sftp currently only supports username/password-based authentication.

® Each repository can have its own layout.

Let's say, you declare adependency onthej uni t: j uni t: 3. 8. 2 library. Now how does Gradle find it in the
repositories? Somehow the dependency information has to be mapped to a path. In contrast to Maven, where
this path is fixed, with Gradle you can define a pattern that defines what the path will look like. Here are some
examples; [16]

/1 Maven2 layout (if a repository is marked as Maven2 conpati bl e, the organi zation
somer oot /[organi sation] /[nodul e]/[revision]/[nmodul e]-[revision].[ext]

/1 Typical l|ayout for an Ivy repository (the organization is not split into subfol(

sonmer oot /[organi sation]/[nodul e]/[revision]/[type]s/[artifact].[ext]

/1 Sinmple layout (the organization is not used, no nested fol ders.)
soneroot/[artifact]-[revision].[ext]

To add any kind of repository (you can pretty easy write your own ones) you can do:

Example 51.43. Definition of a custom repository
buil d. gradl e
repositories {

ivy {
i vyPattern "$projectDir/repo/[organisation]/[nodul e]-ivy-[revision].xm"

artifactPattern "$projectDir/repo/[organi sation]/[nmodul e]-[revision](-[clag

An overview of which Resolvers are offered by Ivy and thus also by Gradle can be found here. With Gradle you
just don't configure them via XML but directly viatheir API.

51.7. How dependency resolution works

Gradle takes your dependency declarations and repository definitions and attempts to download all of your
dependencies by a process called dependency resolution. Below isabrief outline of how this process works.

® Given a required dependency, Gradle first attempts to resolve the module for that dependency. Each
repository is inspected in order, searching first for a module descriptor file (POM or lvy file) that indicates
the presence of that module. If no module descriptor is found, Gradle will search for the presence of the
primary module artifact file indicating that the module exists in the repository.

* |f the dependency is declared as a dynamic version (like 1. +), Gradle will resolve this to the newest
available static version (like 1. 2) in the repository. For Maven repositories, thisis done using the maven- n
file, while for Ivy repositories thisis done by directory listing.

® |f the module descriptor is a POM file that has a parent POM declared, Gradle will recursively attempt to
resolve each of the parent modules for the POM.

Page 279 of 448

http://ant.apache.org/ivy/history/latest-milestone/settings/resolvers.html

® Once each repository has been inspected for the module, Gradle will choose the 'best' one to use. This is
done using the following criteria
® For adynamic version, a'higher' static version is preferred over a'lower' version.
® Modules declared by a module descriptor file (Ivy or POM file) are preferred over modules that have an
artifact file only.
® Modulesfrom earlier repositories are preferred over modulesin later repositories.
When the dependency is declared by a static version and a module descriptor file is found in a repository,
there is no need to continue searching later repositories and the remainder of the processis short-circuited.
* All of the artifacts for the module are then regquested from the same repository that was chosen in the
process above.

51.8. Fine-tuning the dependency resolution
process

In most cases, Gradle's default dependency management will resolve the dependencies that you want in your
build. In some cases, however, it can be necessary to tweak dependency resolution to ensure that your build
receives exactly the right dependencies.

There are a number of ways that you can influence how Gradle resolves dependencies.

51.8.1. Forcing a particular module version

Forcing a module version tells Gradle to always use a specific version for given dependency (transitive or not),
overriding any version specified in a published module descriptor. This can be very useful when tackling
version conflicts - for more information see Section 51.2.3, “Resolve version conflicts’.

Force versions can also be used to dea with rogue metadata of transitive dependencies. If a transitive
dependency has poor quality metadata that leads to problems at dependency resolution time, you can force
Gradle to use a newer, fixed version of this dependency. For an example, see the Resol uti onSt r at egy
classin the APl documentation. Note that ‘dependency resolve rules (outlined below) provide a more powerful
mechanism for replacing a broken module dependency. See Section 51.8.2.3, “Blacklisting a particular version
with areplacement”.

51.8.2. Using dependency resolve rules

A dependency resolve ruleis executed for each resolved dependency, and offers a powerful api for manipulating
a requested dependency prior to that dependency being resolved. This feature is incubating, but currently offers
the ability to change the group, name and/or version of a requested dependency, allowing a dependency to be
substituted with a completely different module during resol ution.

Dependency resolve rules provide a very powerful way to control the dependency resolution process, and can be
used to implement all sorts of advanced patterns in dependency management. Some of these patterns are
outlined below. For more information and code samples see the Resol uti onSt r at egy class in the AP
documentation.

Page 280 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.ResolutionStrategy.html

51.8.2.1. Modelling releaseable units

Often an organisation publishes a set of libraries with a single version; where the libraries are built, tested and
published together. These libraries form a 'releasable unit', designed and intended to be used as awhole. It does
not make sense to use libraries from different releasable units together.

But it is easy for transitive dependency resolution to violate this contract. For example:

®* nodul e- a dependsonr el easabl e-unit:part-one:1.0
® nodul e- b dependsonr el easabl e-unit:part-two: 1.1

A build depending on both nodul e- a and nodul e- b will obtain different versions of libraries within the
releasable unit.

Dependency resolve rules give you the power to enforce releasable units in your build. Imagine a rel easable unit
defined by all libraries that have 'org.gradle’ group. We can force al of these libraries to use a consistent
version:

Example 51.44. Forcing consistent version for a group of libraries

bui I d. gradl e

configurations.all {
resol uti onStrat egy. eachDependency { DependencyResol veDetails details ->
if (details.requested.group == 'org.gradle') {
details.useVersion '1.4'

51.8.2.2. Implement a custom versioning scheme

In some corporate environments, the list of module versions that can be declared in Gradle builds is maintained
and audited externally. Dependency resolve rules provide a neat implementation of this pattern:

® |nthe build script, the developer declares dependencies with the module group and name, but uses a
placeholder version, for example: 'def aul t .

* The'default’ version isresolved to a specific version via a dependency resolve rule, which looks up the
version in a corporate catalog of approved modules.

This rule implementation can be neatly encapsulated in a corporate plugin, and shared across al builds within
the organisation.

Page 281 of 448

Example 51.45. Using a custom ver sioning scheme

bui I d. gradl e

configurations.all {
resol uti onStrat egy. eachDependency { DependencyResol veDetails details ->
if (details.requested.version == "default') {
def version = findDefaultVersionlnCatal og(details.requested. group, det3i
detai |l s. useVersi on version

def findDefaul tVersionlnCatal og(String group, String nane) ({
//some custom | ogic that resolves the default version into a specific version
"1 0"

51.8.2.3. Blacklisting a particular version with a replacement

Dependency resolve rules provide a mechanism for blacklisting a particular version of a dependency and
providing areplacement version. This can be useful if a certain dependency version is broken and should not be
used, where a dependency resolve rule causes this version to be replaced with a known good version. One
example of a broken module is one that declares a dependency on a library that cannot be found in any of the
public repositories, but there are many other reasons why a particular module version is unwanted and a
different version is preferred.

In example below, imagine that version 1. 2. 1 contains important fixes and should always be used in
preference to 1. 2. The rule provided will enforce just this: any time version 1. 2 is encountered it will be
replaced with 1. 2. 1. Note that this is different from a forced version as described above, in that any other
versions of this module would not be affected. This means that the 'newest' conflict resolution strategy would
till select version 1. 3 if this version was also pulled transitively.

Example 51.46. Blacklisting a version with a replacement

bui I d. gradl e

configurations.all {
resol uti onStrat egy. eachDependency { DependencyResol veDetails details ->
if (details.requested.group == 'org.software’ && details.requested. name ==
/I prefer different version which contains some necessary fixes

details.useVersion '1.2.1'

51.8.2.4. Substituting a dependency module with a compatible replacement

At times a completely different module can serve as a replacement for a requested module dependency.
Examplesinclude using 'gr oovy" in place of 'gr oovy-al | ', or using 'l og4j - over - sl f 4j "instead of 'l 0g4j
', Starting with Gradle 1.5 you can make these substitutions using dependency resolve rules:

Page 282 of 448

Example 51.47. Changing dependency group and/or name at the resolution

bui I d. gradl e

configurations.all {
resol uti onStrat egy. eachDependency { DependencyResol veDetails details ->
if (details.requested. nane == 'groovy-all"') {
/I prefer 'groovy' over 'groovy-all':
detail s. useTarget group: details.requested. group, nane: 'groovy', versi

}

if (details.requested.nane == '|lo0g4]"') {
/I prefer 'log4j-over-slf4j' over 'log4j', with fixed version:
details.useTarget "org.slf4j:1o0g4j-over-slf4j:1.7.7"

51.8.2.5. Declaring that alegacy library is replaced by a new one

A good example when anew library replaced alegacy oneis the "google-collections' -> "guava' migration. The
team that created google-collections decided to change the module name from
"com.google.collections.google-collections’ into "com.google.guava:guava'. This a legal scenario in the
industry: teams need to be able to change the names of products they maintain, including the module
coordinates. Renaming of the module coordinates has impact on conflict resolution.

To explain the impact on conflict resolution, let's consider the "google-collections' -> "guava' scenario. It may
happen that both libraries are pulled into the same dependency graph. For example, "our" project depends on
guava but some of our dependencies pull in a legacy version of google-collections. This can cause runtime
errors, for example during test or application execution. Gradle does not automatically resolve the
google-collections VS guava conflict because it is not considered as a "version conflict”. It's because the module
coordinates for both libraries are completely different and conflict resolution is activated when "group” and
"name" coordinates are the same but there are different versions available in the dependency graph (for more
info, please refer to the section on conflict resolution). Traditional remedies to this problem are:

® Declare exclusion rule to avoid pulling in "google-collections' to graph. It is probably the most popular
approach.

® Avoid dependenciesthat pull in legacy libraries.

* Upgrade the dependency version if the new version no longer pullsin alegacy library.

* Downgrade to "google-collections'. It's not recommended, just mentioned for completeness.

Traditional approaches work but they are not general enough. For example, an organisation wants to resolve the
google-collections VS guava conflict resolution problem in all projects. Starting from Gradle 2.2 it is possible to
declare that certain module was replaced by other. This enables organisations to include the information about
module replacement in the corporate plugin suite and resolve the problem holistically for all Gradle-powered
projectsin the enterprise.

Page 283 of 448

Example 51.48. Declaring module replacement

bui I d. gradl e

dependenci es {
modul es {
modul e(" com googl e. col | ecti ons: googl e-col | ections") {

repl acedBy(" com googl e. guava: guava")

For more examples and detailed API, please refer to the DSL reference for Conrponent Met adat aHandl er .

What happens when we declare that "google-collections" are replaced by "guava'? Gradle can use this
information for conflict resolution. Gradle will consider every version of "guava' newer/better than any version
of "google-collections'. Also, Gradle will ensure that only guava jar is present in the classpath / resolved file
list. Please note that if only "google-collections' appears in the dependency graph (e.g. no "guava') Gradle will
not eagerly replace it with "guava'. Module replacement is an information that Gradle uses for resolving
conflicts. If there is no conflict (e.g. only "google-collections' or only "guava' in the graph) the replacement
information is not used.

Currently it is not possible to declare that certain modules is replaced by a set of modules. However, it is
possible to declare that multiple modules are replaced by a single module.

51.8.3. Enabling Ivy dynamic resolve mode

Gradle's Ivy repository implementations support the equivalent to Ivy's dynamic resolve mode. Normally,
Gradle will use the r ev attribute for each dependency definition included in an i vy. xm file. In dynamic
resolve mode, Gradle will instead prefer the r evConst r ai nt attribute over the r ev attribute for a given
dependency definition. If ther evConst r ai nt attribute is not present, ther ev attribute is used instead.

To enable dynamic resolve mode, you need to set the appropriate option on the repository definition. A couple
of examples are shown below. Note that dynamic resolve mode is only available for Gradle's Ivy repositories. It
isnot available for Maven repositories, or custom lvy DependencyResol ver implementations.

Example 51.49. Enabling dynamic resolve mode

buil d. gradl e

/1 Can enabl e dynanmi c resol ve node when you define the repository
repositories {
ivy {
url "http://repo. myconpany. conirepo"
resol ve. dynam cMode = true

}

/1 Can use a rule instead to enable (or disable) dynami c resolve node for all repoj
repositories.withType(lvyArtifact Repository) {
r esol ve. dynam cMode = true

}

Page 284 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.dsl.ComponentMetadataHandler.html

51.8.4. Component metadata rules

Each module (also called component) has metadata associated with it, such as its group, name, version,
dependencies, and so on. This metadata typically originates in the modul€'s descriptor. Metadata rules allow
certain parts of a module's metadata to be manipulated from within the build script. They take effect after a
module's descriptor has been downloaded, but before it has been selected among all candidate versions. This
makes metadata rules another instrument for customizing dependency resolution.

One piece of module metadata that Gradle understands is a modul€'s status scheme. This concept, also known
from lvy, models the different levels of maturity that a module transitions through over time. The default status
scheme, ordered from least to most mature status, isi nt egr ati on, m | est one, r el ease. Apart from a
status scheme, a module also has a (current) status, which must be one of the values in its status scheme. If not
specified in the (Ivy) descriptor, the status defaults to i nt egr ati on for Ivy modules and Maven snapshot
modules, and r el ease for Maven modules that aren't snapshots.

A modul€e's status and status scheme are taken into consideration when al at est version selector is resolved.
Specifically, | at est . someSt at us will resolve to the highest module version that has status some St at us
or a more mature status. For example, with the default status scheme in place, | at est . i nt egrati on will
select the highest module version regardless of its status (because i nt egr at i on is the least mature status),
whereas | at est . rel ease will select the highest module version with status r el ease. Here is what this
looks likein code:

Example 51.50. 'L atest' version selector

buil d. gradl e

dependenci es {
configl "org.sanple:client:|atest.integration”
config2 "org.sanple:client:|atest.rel ease"

}

task listConfigs << {
configurations.configl.each { println it.nane }
println()
configurations. config2.each { println it.nane}

Outputof gradl e -q |istConfigs

> gradle -q |istConfigs
client-1.5.jar

client-1.4.jar

The next example demonstrates | at est selectors based on a custom status scheme declared in a component
metadata rule that appliesto all modules:

Page 285 of 448

Example 51.51. Custom status scheme

bui I d. gradl e

dependenci es {
config3 "org.sanple:api:|latest.silver"
conponent s {
all { Conponent Met adat aDetails details ->
if (details.id.group == "org.sanple"” & details.id.nane == "api ") {

detail s. statusSchene = ["bronze", "silver", "gold", "platinuni]

Component metadata rules can be applied to a specified module. Modules must be specified in the form of
"group:module”.

Example 51.52. Custom status scheme by module
buil d. gradle

dependenci es {
config4 "org.sanple:lib:latest. prod"
conponents {
wi t hModul e(' org. sanpl e: i b") { Conponent Met adat aDetails details ->
details.statusScheme = ["int", "rc", "prod"]

Gradle can also create component metadata rules utilizing 1vy-specific metadata for modules resolved from an
lvy repository. Values from the Ivy descriptor are made available viathe | vyModul eDescr i pt or interface.

Example 51.53. vy component metadatarule
buil d. gradl e

dependenci es {
configb6 "org.sanple:lib:latest.rc"
conponents {
wi t hMbdul e("org. sanpl e: i b") { Conponent Met adat aDetails details, |vyMdul el
if (ivyModul e.branch == "testing') {

details.status = "rc"

Note that any rule that declares specific arguments must always include a Conponent Met adat aDet ai | s
argument as the first argument. The second vy metadata argument is optional.

Component metadata rules can also be defined using a rule source object. A rule source object is any object that
contains exactly one method that defines the rule action and is annotated with @vut at e.

Page 286 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/ComponentMetadataDetails.html

This method:

® must return void.
* must have Conponent Met adat aDet ai | s asthe first argument.
®* may have an additional parameter of type | vyModul eDescri pt or.

Example 51.54. Rule sour ce component metadatarule

bui I d. gradl e

dependenci es {
config5 "org.sanpl e: api: | atest. gol d"
conponent s {
wi t hMbdul e(* org. sanpl e: api ', new Custontt at usRul e())

}
}

cl ass CustonttatusRul e {

@t at e
voi d set St at usSchene(Conponent Met adat aDetail s details) {
detail s. statusScheme = ["bronze", "silver", "gold", "platinuni]

}

51.8.5. Component Selection Rules

Component selection rules may influence which component instance should be selected when multiple versions
are available that match a version selector. Rules are applied against every available version and alow the
version to be explicitly rejected by rule. This allows Gradle to ignore any component instance that does not
satisfy conditions set by the rule. Examples include:

® For adynamic version like '1.+' certain versions may be explicitly rejected from selection
® For adtatic version like '1.4' an instance may be rejected based on extra component metadata such as the vy
branch attribute, allowing an instance from a subsequent repository to be used.

Rules are configured via the Conponent Sel ect i onRul es object. Each rule configured will be called with
a Conponent Sel ecti on object as an argument which contains information about the candidate version
being considered. Calling Conponent Sel ecti on. reject () causes the given candidate version to be
explicitly rejected, in which case the candidate will not be considered for the selector.

The following example shows a rule that disallows a particular version of a module but alows the dynamic
version to choose the next best candidate.

Page 287 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/ComponentMetadataDetails.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.ComponentSelectionRules.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.ComponentSelection.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.ComponentSelection.html#org.gradle.api.artifacts.ComponentSelection:reject(java.lang.String)

Example 51.55. Component selection rule
buil d. gradl e

configurations {
rejectConfig {
resol utionStrategy {
conponent Sel ecti on {

/'l Accept the highest version matching the requested version that i

all { Conponent Sel ecti on sel ection ->
if (selection.candidate.group == 'org.sanple' && sel ection. can(
selection.reject("version 1.5 is broken for 'org.sanple: api

}

dependenci es {
rej ectConfig "org. sanpl e: api : 1. +"

}

Note that version selection is applied starting with the highest version first. The version selected will be the first
version found that all component selection rules accept. A version is considered accepted no rule explicitly
rejectsit.

Similarly, rules can be targeted at specific modules. Modules must be specified in the form of "group:module”.

Example 51.56. Component selection rule with module tar get
buil d. gradl e

configurations {
target Config {
resol utionStrategy {
conponent Sel ecti on {
wi t hModul e("or g. sanpl e: api ") { Conponent Sel ection sel ection ->
if (selection.candidate.version == "1.5") {
selection.reject("version 1.5 is broken for 'org.sanple: api

}

Component selection rules can also consider component metadata when selecting a version. Possible metadata
arguments that can be considered are Conponent Met adat a and | vyModul eDescri pt or.

Page 288 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/ComponentMetadata.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html

Example 51.57. Component selection rule with metadata
buil d. gradl e

configurations {
met adat aRul esConfi g {
resol utionStrategy {
conponent Sel ecti on {

/'l Reject any versions with a status of 'experinental’
all { Conponent Sel ecti on sel ecti on, Conmponent Met adata net adata ->
if (selection.candidate.group == 'org.sanple' && netadata. stat
selection.reject("don't use experinental candidates from'

}
}

/'l Accept the highest version with either a "rel ease" branch
wi t hMbdul e(* org. sanpl e: api ') { Conponent Sel ecti on sel ecti on

if (descriptor.branch != "rel ease" && netadata.status !=

sel ection.reject ("' org. sanpl e: api' nust have testing

}

Note that a Conponent Sel ecti on argument is always required as the first parameter when declaring a
component selection rule with additional vy metadata parameters, but the metadata parameters can be declared
in any order.

Lastly, component selection rules can aso be defined using a rule source object. A rule source object is any
object that contains exactly one method that defines the rule action and is annotated with @vut at e.

This method:

® must return void.
* must have Conponent Sel ect i on asthefirst argument.
* may have additional parameters of type Corponent Met adat a and/or | vyModul eDescri pt or.

Page 289 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.ComponentSelection.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.ComponentSelection.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/ComponentMetadata.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html

Example 51.58. Component selection rule using a rule sour ce object

bui I d. gradl e

cl ass Rej ect Test Branch {
@t at e
voi d eval uat eRul e(Conponent Sel ecti on sel ection, |vyMdul eDescriptor ivy) {
if (ivy.branch == "test") {
sel ection.reject("reject test branch")

configurations {
rul eSour ceConfi g {
resol uti onStrategy {
conponent Sel ecti on {
all new Rej ect Test Branch()

51.9. The dependency cache

Gradle contains a highly sophisticated dependency caching mechanism, which seeks to minimise the number of
remote requests made in dependency resolution, while striving to guarantee that the results of dependency
resolution are correct and reproducible.

The Gradle dependency cache consists of 2 key types of storage:

* A file-based store of downloaded artifacts, including binaries like jars as well as raw downloaded meta-data
like POM files and lvy files. The storage path for a downloaded artifact includes the SHA1 checksum,
meaning that 2 artifacts with the same name but different content can easily be cached.

® A binary store of resolved module meta-data, including the results of resolving dynamic versions, module
descriptors, and artifacts.

Separating the storage of downloaded artifacts from the cache metadata permits us to do some very powerful
things with our cache that would be difficult with a transparent, file-only cache layout.

The Gradle cache does not allow the local cache to hide problems and create other mysterious and difficult to
debug behavior that has been a challenge with many build tools. This new behavior is implemented in a
bandwidth and storage efficient way. In doing so, Gradle enables reliable and reproducible enterprise builds.

Page 290 of 448

51.9.1. Key features of the Gradle dependency cache

51.9.1.1. Separate metadata cache

Gradle keeps arecord of various aspects of dependency resolution in binary format in the metadata cache. The
information stored in the metadata cache includes:

® Theresult of resolving adynamic version (e.g. 1. +) to aconcreteversion (e.g. 1. 2).

® The resolved module metadata for a particular module, including module artifacts and module dependencies.

* Theresolved artifact metadata for a particular artifact, including a pointer to the downloaded artifact file.

® The absence of a particular module or artifact in a particular repository, eliminating repeated attempts to
access aresource that does not exist.

Every entry in the metadata cache includes a record of the repository that provided the information as well as a
timestamp that can be used for cache expiry.

51.9.1.2. Repository caches are independent

As described above, for each repository there is a separate metadata cache. A repository is identified by its
URL, type and layout. If a module or artifact has not been previously resolved from this repository, Gradle will
attempt to resolve the module against the repository. This will always involve a remote lookup on the
repository, however in many cases no download will be required (seeSection 51.9.1.3, “Artifact reuse”, below).

Dependency resolution will fail if the required artifacts are not available in any repository specified by the build,
even if the local cache has a copy of this artifact which was retrieved from a different repository. Repository
independence allows builds to be isolated from each other in an advanced way that no build tool has done
before. Thisis akey feature to create builds that are reliable and reproducible in any environment.

51.9.1.3. Artifact reuse

Before downloading an artifact, Gradle tries to determine the checksum of the required artifact by downloading
the sha file associated with that artifact. If the checksum can be retrieved, an artifact is not downloaded if an
artifact already exists with the same id and checksum. If the checksum cannot be retrieved from the remote
server, the artifact will be downloaded (and ignored if it matches an existing artifact).

As well as considering artifacts downloaded from a different repository, Gradle will also attempt to reuse
artifacts found in the local Maven Repository. If a candidate artifact has been downloaded by Maven, Gradle
will usethis artifact if it can be verified to match the checksum declared by the remote server.

51.9.1.4. Checksum based storage

It is possible for different repositories to provide a different binary artifact in response to the same artifact
identifier. Thisis often the case with Maven SNAPSHOT artifacts, but can also be true for any artifact which is
republished without changing it's identifier. By caching artifacts based on their SHA1 checksum, Gradle is able
to maintain multiple versions of the same artifact. This means that when resolving against one repository Gradle
will never overwrite the cached artifact file from a different repository. This is done without requiring a separate
artifact file store per repository.

Page 291 of 448

51.9.1.5. Cache Locking

The Gradle dependency cache uses file-based locking to ensure that it can safely be used by multiple Gradle
processes concurrently. The lock is held whenever the binary meta-data store is being read or written, but is
released for slow operations such as downloading remote artifacts.

51.9.2. Command line options to override caching

51.9.2.1. Offline

The - - of f1 i ne command line switch tells Gradle to always use dependency modules from the cache,
regardiess if they are due to be checked again. When running with offline, Gradle will never attempt to access

the network to perform dependency resolution. If required modules are not present in the dependency cache,
build execution will fail.

51.9.2.2. Refresh

At times, the Gradle Dependency Cache can be out of sync with the actual state of the configured repositories.
Perhaps a repository was initially misconfigured, or perhaps a “non-changing” module was published
incorrectly. To refresh all dependencies in the dependency cache, use the - - r ef r esh- dependenci es
option on the command line.

The - -refresh- dependenci es option tells Gradle to ignore all cached entries for resolved modules and
artifacts. A fresh resolve will be performed against al configured repositories, with dynamic versions
recalculated, modules refreshed, and artifacts downloaded. However, where possible Gradle will check if the
previously downloaded artifacts are valid before downloading again. This is done by comparing published
SHA1 valuesin the repository with the SHA1 values for existing downloaded artifacts.

51.9.3. Fine-tuned control over dependency caching

Y ou can fine-tune certain aspects of caching using the Resol ut i onSt r at egy for a configuration.

By default, Gradle caches dynamic versions for 24 hours. To change how long Gradle will cache the resolved
version for adynamic version, use:

Example 51.59. Dynamic version cache control

buil d. gradl e

configurations.all {
resol uti onStrat egy. cacheDynani cVer si onsFor 10, 'm nutes’

}

By default, Gradle caches changing modules for 24 hours. To change how long Gradle will cache the meta-data
and artifacts for a changing module, use:

Page 292 of 448

Example 51.60. Changing module cache contr ol
buil d. gradl e

configurations.all {

resol uti onStrat egy. cacheChangi nghvbdul esFor 4, 'hours'

}

For more details, take alook at the APl documentation for Resol ut i onSt r at egy.

51.10. Strategies for transitive dependency
management

Many projects rely on the Maven Central repository. Thisis not without problems.

®* The Maven Central repository can be down or can be slow to respond.

* The POM files of many popular projects specify dependencies or other configuration that are just plain
wrong (for instance, the POM file of the “commons- ht t pcl i ent - 3. 0” module declares JUnit as a
runtime dependency).

® For many projects thereis not one right set of dependencies (as more or less imposed by the POM format).

If your project relies on the Maven Central repository you are likely to need an additional custom repository,
because:

® You might need dependencies that are not uploaded to Maven Central yet.

® Youwant to deal properly with invalid metadatain a Maven Central POM file.

® You don't want to expose people to the downtimes or slow response of Maven Central, if they just want to
build your project.

It is not a big deal to set-up a custom repository, [17] put it can be tedious to keep it up to date. For a new
version, you always have to create the new XML descriptor and the directories. Your custom repository is
another infrastructure element which might have downtimes and needs to be updated. To enable historical
builds, you need to keep all the past libraries, not to mention a backup of these. It is another layer of indirection.
Another source of information you have to lookup. All this is not really a big deal but in its sum it has an
impact. Repository managers like Artifactory or Nexus make this easier, but most open source projects don't
usually have a host for those products. This is changing with new services like Bintray that let devel opers host
and distribute their release binaries using a self-service repository platform. Bintray also supports sharing
approved artifacts though the JCenter public repository to provide a single resolution address for all popular
OSS Java artifacts (see Section 51.6.3, “Maven JCenter repository”).

This is a common reason why many projects prefer to store their libraries in their version control system. This
approach is fully supported by Gradle. The libraries can be stored in a flat directory without any XML module
descriptor files. Yet Gradle offers complete transitive dependency management. You can use either client
module dependencies to express the dependency relations, or artifact dependencies in case a first level
dependency has no transitive dependencies. People can check out such a project from your source code control
system and have everything necessary to build it.

If you are working with a distributed version control system like Git you probably don't want to use the version

Page 293 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
https://repo1.maven.org/maven2
http://bintray.com
http://jcenter.bintray.com

control system to store libraries as people check out the whole history. But even here the flexibility of Gradle
can make your life easier. For example, you can use a shared flat directory without XML descriptors and yet
you can have full transitive dependency management, as described above.

You could also have a mixed strategy. If your main concern is bad metadata in the POM file and maintaining
custom XML descriptors, then Client Modules offer an alternative. However, you can still use a Maven2 repo or
your custom repository as a repository for jars only and still enjoy transitive dependency management. Or you
can only provide client modules for POMs with bad metadata. For the jars and the correct POMs you still use
the remote repository.

51.10.1. Implicit transitive dependencies

There is another way to deal with transitive dependencies without XML descriptor files. You can do this with
Gradle, but we don't recommend it. We mention it for the sake of completeness and comparison with other build
tools.

The trick is to use only artifact dependencies and group them in lists. This will directly express your first level
dependencies and your transitive dependencies (see Section 51.4.8, “Optional attributes’). The problem with
this is that Gradle dependency management will see this as specifying al dependencies as first level
dependencies. The dependency reports won't show your real dependency graph and the conpi | e task uses all
dependencies, not just the first level dependencies. All in all, your build is less maintainable and reliable than it
could be when using client modules, and you don't gain anything.

[14] Gradle supports partial multiproject builds (see Chapter 57, Multi-project Builds).
[15] http://books.sonatype.com/mvnref-book/reference/pom-rel ati onshi ps-sect-proj ect-rel ationshi ps.html
[16] At http://ant.apache.org/ivy/history/latest-mil estone/concept.html you can learn more about ivy patterns.

[17] If you want to shield your project from the downtimes of Maven Central things get more complicated. You
probably want to set-up a repository proxy for this. In an enterprise environment this is rather common. For an
open source project it looks like overkill.

Page 294 of 448

http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-project-relationships.html
http://ant.apache.org/ivy/history/latest-milestone/concept.html

52

Publishing artifacts

This chapter describes the original publishing mechanism available in Gradle 1.0: in Gradle 1.3 a new
mechanism for publishing was introduced. While this new mechanism is incubating and not yet complete,
it introduces some new concepts and features that do (and will) make Gradle publishing even more
powerful.

You can read about the new publishing plugins in Chapter 65, Ivy Publishing (new) and Chapter 66,
Maven Publishing (new). Please try them out and give us feedback.

52.1. Introduction

This chapter is about how you declare the outgoing artifacts of your project, and how to work with them (e.g.
upload them). We define the artifacts of the projects as the files the project provides to the outside world. This
might be alibrary or a ZIP distribution or any other file. A project can publish as many artifacts asit wants.

52.2. Artifacts and configurations

Like dependencies, artifacts are grouped by configurations. In fact, a configuration can contain both artifacts
and dependencies at the sametime.

For each configuration in your project, Gradle provides the tasks upl oad Conf i gur at i onNanme and bui | dCor
. [18] Execution of these tasks will build or upload the artifacts belonging to the respective configuration.

Table 23.5, “Java plugin - dependency configurations’ shows the configurations added by the Java plugin. Two
of the configurations are relevant for the usage with artifacts. The ar chi ves configuration is the standard
configuration to assign your artifacts to. The Java plugin automatically assigns the default jar to this
configuration. We will talk more about the r unt i me configuration in Section 52.5, “More about project
libraries’. Aswith dependencies, you can declare as many custom configurations as you like and assign artifacts
to them.

Page 295 of 448

52.3. Declaring artifacts

52.3.1. Archivetask artifacts

Y ou can use an archive task to define an artifact:

Example 52.1. Defining an artifact using an ar chive task
buil d. gradle

task myJar(type: Jar)

artifacts {
ar chi ves mnyJar

}

It is important to note that the custom archives you are creating as part of your build are not automatically
assigned to any configuration. Y ou have to explicitly do this assignment.

52.3.2. File artifacts

Y ou can aso use afile to define an artifact:

Example 52.2. Defining an artifact using afile

bui I d. gradl e

def someFile = file('build/ sonmefile.txt")

artifacts {
ar chi ves soneFile

}

Gradle will figure out the properties of the artifact based on the name of the file. You can customize these
properties:

Example 52.3. Customizing an artifact

bui I d. gradl e

task nyTask(type: MTaskType) {
destFile = file(' build/sonefile.txt")

}

artifacts {

archi ves(nyTask. destFile) {
name 'ny-artifact’
type 'text'
bui | t By myTask

Page 296 of 448

There is a map-based syntax for defining an artifact using a file. The map must include afi | e entry that
defines the file. The map may include other artifact properties:

Example 52.4. Map syntax for defining an artifact using afile

bui I d. gradl e

task generate(type: MTaskType) {
destFile = file(' build/sonefile.txt")

}

artifacts {
archives file: generate.destFile, name: 'ny-artifact', type: 'text', builtBy:

}

52.4. Publishing artifacts

We have said that there is a specific upload task for each configuration. Before you can do an upload, you have
to configure the upload task and define where to publish the artifacts to. The repositories you have defined (as
described in Section 51.6, “Repositories’) are not automatically used for uploading. In fact, some of those
repositories only allow downloading artifacts, not uploading. Here is an example of how you can configure the
upload task of a configuration:

Example 52.5. Configuration of the upload task

buil d. gradl e

repositories {
flatDir {
name "fil eRepo"
dirs "repo"

}
upl oadAr chi ves {

repositories {
add project.repositories.fil eRepo

ivy {
credentials {
user nane "usernanme"
password " pw'

}

url "http://repo. myconpany. conf

As you can see, you can either use areference to an existing repository or create a new repository. As described
in Section 51.6.9, “More about Ivy resolvers’, you can use al the Ivy resolvers suitable for the purpose of
uploading.

If an upload repository is defined with multiple patterns, Gradle must choose a pattern to use for uploading each
file. By default, Gradle will upload to the pattern defined by the ur | parameter, combined with the optional | ayou

Page 297 of 448

parameter. If no ur | parameter is supplied, then Gradle will use the first defined arti f act Pattern for
uploading, or thefirst defined i vy Pat t er n for uploading vy files, if thisis set.

Uploading to a Maven repository is described in Section 53.6, “Interacting with Maven repositories”’.

52.5. More about project libraries

If your project is supposed to be used as a library, you need to define what are the artifacts of this library and
what are the dependencies of these artifacts. The Java plugin adds ar unt i me configuration for this purpose,
with the implicit assumption that the r unt i me dependencies are the dependencies of the artifact you want to
publish. Of course this is fully customizable. You can add your own custom configuration or let the existing
configurations extend from other configurations. Y ou might have a different group of artifacts which have a
different set of dependencies. This mechanism is very powerful and flexible.

If someone wants to use your project as a library, she simply needs to declare which configuration of the
dependency to depend on. A Gradle dependency offersthe conf i gur at i on property to declare this. If thisis
not specified, the def aul t configuration is used (see Section 51.4.9, “Dependency configurations’). Using
your project as alibrary can either happen from within a multi-project build or by retrieving your project from a
repository. In the latter case, ani vy. xm descriptor in the repository is supposed to contain all the necessary
information. If you work with Maven repositories you don't have the flexibility as described above. For how to
publish to a Maven repository, see the section Section 53.6, “Interacting with Maven repositories’.

[18] To be exact, the Base plugin provides those tasks. This plugin is automatically applied if you use the Java
plugin.

Page 298 of 448

53

The Maven Plugin

This chapter isawork in progress

The Maven plugin adds support for deploying artifacts to Maven repositories.

53.1. Usage

To use the Maven plugin, include the following in your build script:

Example 53.1. Using the Maven plugin
buil d. gradl e

apply plugin: 'nmaven'

53.2. Tasks

The Maven plugin defines the following tasks:

Table53.1. Maven plugin - tasks

Task Depends Type Description

name on

install All tasks Upl oad Installsthe associated artifacts to the local Maven cache,
that build including Maven metadata generation. By default the install task
the is associated with the ar chi ves configuration. This
associated configuration has by default only the default jar as an element. To
archives. learn more about installing to the local repository, see:

Section 53.6.3, “Installing to the local repository”

53.3. Dependency management

The Maven plugin does not define any dependency configurations.

Page 299 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Upload.html

53.4. Convention properties

The Maven plugin defines the following convention properties:

Table 53.2. Maven plugin - properties

Property name Type Default value

ponDi r Nare String pons

Description

The path of the
directory to
writethe
generated
POMs, relative
to the build
directory.

ponDi r File (read-only) bui | dDi r/ ponDi meNdireetory

conf 2ScopeMappi ngs Conf 2ScopeMappi ngCont ai ner n/ a

These properties are provided by a MavenPl ugi nConvent i on convention object.

53.5. Convention methods

where the
generated POMs
are written to.

Instructions for
mapping Gradle
configurations
to Maven
scopes. See
Section 53.6.4.2,
“Dependency
mapping”.

The maven plugin provides a factory method for creating a POM. Thisis useful if you need a POM without the

context of uploading to a Maven repo.

Page 300 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/maven/Conf2ScopeMappingContainer.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.MavenPluginConvention.html

Example 53.2. Creating a stand alone pom.
buil d. gradl e

task writeNewPom << {
pom {
project {
i nceptionYear '2008
licenses {
license {

nanme ' The Apache Software License, Version 2.0
url "http://ww. apache. org/licenses/ LI CENSE-2. 0. t xt"'
distribution 'repo’

}

}
}.witeTo("$buil dDi r/ newpom xni ")

Amongst other things, Gradle supports the same builder syntax as polyglot Maven. To learn more about the
Gradle Maven POM object, see MavenPom See also: MavenPl ugi nConventi on

53.6. Interacting with Maven repositories

53.6.1. Introduction

With Gradle you can deploy to remote Maven repositories or install to your local Maven repository. This
includes all Maven metadata manipulation and works also for Maven snapshots. In fact, Gradl€e's deployment is
100 percent Maven compatible as we use the native Maven Ant tasks under the hood.

Deploying to a Maven repository is only half the fun if you don't have a POM. Fortunately Gradle can generate
this POM for you using the dependency information it has.

53.6.2. Deploying to a Maven repository

Let's assume your project produces just the default jar file. Now you want to deploy this jar file to a remote
Maven repository.

Example 53.3. Upload of fileto remote Maven repository

bui I d. gradl e

apply plugin: 'nmaven'

upl oadAr chi ves {
repositories {

mavenDepl oyer {
repository(url: "file://local host/tnp/ myRepo/")

That isall. Calling the upl oadAr chi ves task will generate the POM and deploys the artifact and the POM to

Page 301 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/maven/MavenPom.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.MavenPluginConvention.html

the specified repository.

There is more work to do if you need support for protocols other than f i | e. In this case the native Maven code
we delegate to needs additional libraries. Which libraries are needed depends on what protocol you plan to use.
The available protocols and the corresponding libraries are listed in Table 53.3, “Protocol jars for Maven
deployment” (those libraries have transitive dependencies which have transitive dependencies). (19 For
example, to use the ssh protocol you can do:

Example 53.4. Upload of file via SSH
buil d. gradl e

configurations {
depl oyer Jars

}

repositories {
mavenCentral ()

}

dependenci es {
depl oyer Jars "org. apache. maven. wagon: wagon- ssh: 2. 2"

}

upl oadAr chi ves {
reposi tori es. mavenDepl oyer {
configuration = configurations. depl oyerJars
repository(url: "scp://repos. nyconpany. conirel eases") {
aut henti cati on(user Name: "ne", password: "nyPassword")

There are many configuration options for the Maven deployer. The configuration is done via a Groovy builder.
All the elements of this tree are Java beans. To configure the simple attributes you pass a map to the bean
elements. To add bean elements to its parent, you use a closure. In the example above repository and
authentication are such bean elements. Table 53.4, “Configuration elements of the MavenDeployer” lists the
available bean elements and a link to the Javadoc of the corresponding class. In the Javadoc you can see the
possible attributes you can set for a particular element.

In Maven you can define repositories and optionally snapshot repositories. If no snapshot repository is defined,
releases and snapshots are both deployed to the r eposi t ory element. Otherwise snapshots are deployed to
thesnapshot Reposi t ory element.

Page 302 of 448

Table 53.3. Protocol jarsfor Maven deployment

Protocol Library
http org.apache.maven.wagon:wagon-http:2.2
ssh org.apache.maven.wagon:wagon-ssh: 2.2

ssh-external org.apache.maven.wagon:wagon-ssh-external:2.2

ftp org.apache.maven.wagon:wagon-ftp:2.2
webdav org.apache.maven.wagon:wagon-webdav:1.0-beta-2
file -

Table 53.4. Configuration elements of the MavenDeployer

Element Javadoc

root MavenDepl oyer

repository org.apache.maven.artifact.ant. RemoteRepository
authentication org.apache.maven.artifact.ant. Authentication
releases org.apache.maven.artifact.ant.RepositoryPolicy
snapshots org.apache.maven.artifact.ant.RepositoryPolicy
proxy org.apache.maven.artifact.ant.Proxy

snapshotRepository org.apache.maven.artifact.ant.RemoteRepository

53.6.3. Installing to the local repository

The Maven pluginaddsani nst al | task to your project. Thistask depends on all the archivestask of the ar chi v
configuration. It installs those archives to your local Maven repository. If the default location for the local
repository isredefinedinaMaven set t i ngs. xnl , thisis considered by this task.

53.6.4. Maven POM generation

When deploying an artifact to a Maven repository, Gradle automatically generates a POM for it. The gr oupl d,
artifactld, version and packagi ng elements used for the POM default to the values shown in the
table below. The dependency elements are created from the project’s dependency declarations.

Page 303 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/maven/MavenDeployer.html
http://maven.apache.org/ant-tasks/apidocs/org/apache/maven/artifact/ant/RemoteRepository.html
http://maven.apache.org/ant-tasks/apidocs/org/apache/maven/artifact/ant/Authentication.html
http://maven.apache.org/ant-tasks/apidocs/org/apache/maven/artifact/ant/RepositoryPolicy.html
http://maven.apache.org/ant-tasks/apidocs/org/apache/maven/artifact/ant/RepositoryPolicy.html
http://maven.apache.org/ant-tasks/apidocs/org/apache/maven/artifact/ant/Proxy.html
http://maven.apache.org/ant-tasks/apidocs/org/apache/maven/artifact/ant/RemoteRepository.html

Table 53.5. Default Valuesfor Maven POM generation

Maven Default Value

Element

groupld project.group

artifactld uploadTask.repositories.mavenDeployer.pom.artifactid (if set) or

archiveTask.baseName.
version project.version

packaging archiveTask.extension

Here, upl oadTask and ar chi veTask refer to the tasks used for uploading and generating the archive,
respectively (for example upl oadAr chi ves andj ar). ar chi veTask. baseNane defaultsto pr oj ect . arc
which in turn defaultsto pr oj ect . nare.

When you set the “ar chi veTask. baseNane” property to a value other than the default, you'll also
have to set upl oadTask. repositories. mavenDepl oyer. pom artifactld to the same
value. Otherwise, the project at hand may be referenced with the wrong artifact ID from generated POMs
for other projectsin the same build.

Generated POMs can be found in <bui | dDi r >/ porrs. They can be further customized via the MavenPom
API. For example, you might want the artifact deployed to the Maven repository to have a different version or
name than the artifact generated by Gradle. To customize these you can do:

Example 53.5. Customization of pom

buil d. gradle

upl oadAr chi ves {
repositories {
mavenDepl oyer {
repository(url: "file://local host/tnp/ myRepo/")

pom version = '1. 0Maven'
pomartifactld = ' myMavenNane'

To add additional content to the POM, the pom pr oj ect builder can be used. With this builder, any element
listed in the Maven POM reference can be added.

Page 304 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/maven/MavenPom.html
http://maven.apache.org/pom.html

Example 53.6. Builder style customization of pom
buil d. gradl e

upl oadAr chi ves {
repositories {
mavenDepl oyer {
repository(url: "file://local host/tnp/ nyRepo/")
pom proj ect {
licenses {
license {

name ' The Apache Software License, Version 2.0
url "http://ww. apache. org/licenses/ LI CENSE-2. 0. t xt'
distribution 'repo

Note: groupl d,arti factld,versi on,and packagi ng should always be set directly on the pomobject.

Example 53.7. M odifying auto-gener ated content
buil d. gradl e

def installer = install.repositories. mavenlnstaller
def depl oyer = upl oadArchi ves. repositories. mavenDepl oyer

[instal |l er, deployer]*. pont.whenConfigured {pom ->
pom dependenci es. find {dep -> dep.groupld == 'group3’ && dep.artifactld =="
}

If you have more than one artifact to publish, things work alittle bit differently. See Section 53.6.4.1, “Multiple
artifacts per project”.

To customize the settings for the Maven installer (see Section 53.6.3, “Installing to the local repository”), you
can do:

Example 53.8. Customization of Maven installer

bui I d. gradl e

install {
repositories. mavenlnstall er {
pom version = '1. 0Maven'

pomartifactld = ' nyNane'

Page 305 of 448

53.6.4.1. Multiple artifacts per project

Maven can only deal with one artifact per project. This is reflected in the structure of the Maven POM. We
think there are many situations where it makes sense to have more than one artifact per project. In such a case
you need to generate multiple POMs. In such a case you have to explicitly declare each artifact you want to
publish to a Maven repository. The MavenDepl oyer and the Maveninstaller both provide an AP for this:

Example 53.9. Generation of multiple poms

bui I d. gradl e

upl oadAr chi ves {
repositories {
mavenDepl oyer {
repository(url: "file://local host/tnp/ nyRepo/")
addFilter('api') {artifact, file ->
artifact.nane == 'api'’

}
addFilter('service') {artifact, file ->
artifact.nane == 'service'

}

pon(' api ') .version = 'mySpeci al MavenVer si on'

You need to declare a filter for each artifact you want to publish. This filter defines a boolean expression for
which Gradle artifact it accepts. Each filter has a POM associated with it which you can configure. To learn
more about thishave alook at Ponti | t er Cont ai ner and its associated classes.

53.6.4.2. Dependency mapping

The Maven plugin configures the default mapping between the Gradle configurations added by the Java and
War plugin and the Maven scopes. Most of the time you don't need to touch this and you can safely skip this
section. The mapping works like the following. You can map a configuration to one and only one scope.
Different configurations can be mapped to one or different scopes. Y ou can also assign a priority to a particular
configuration-to-scope mapping. Have alook at Conf 2ScopeMappi ngCont ai ner to learn more. To access
the mapping configuration you can say:

Example 53.10. Accessing a mapping configuration

bui I d. gradl e

task mappi ngs << {
println conf2ScopeMappi ngs. mappi ngs

}

Gradle exclude rules are converted to Maven excludes if possible. Such a conversion is possibleif in the Gradle
exclude rule the group as well as the module name is specified (as Maven needs both in contrast to Ivy).
Per-configuration excludes are also included in the Maven POM, if they are convertible.

Page 306 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/maven/MavenDeployer.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/maven/PomFilterContainer.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/maven/Conf2ScopeMappingContainer.html

[19] It is planned for afuture release to provide out-of-the-box support for this

Page 307 of 448

54

The Signing Plugin

The signing plugin adds the ability to digitally sign built files and artifacts. These digital signatures can then be
used to prove who built the artifact the signature is attached to as well as other information such as when the
signature was generated.

The signing plugin currently only provides support for generating PGP signatures (which is the signature format
required for publication to the Maven Central Repository).

94.1. Usage

To use the Signing plugin, include the following in your build script:

Example 54.1. Using the Signing plugin

bui I d. gradl e

apply plugin: 'signing

54.2. Signatory credentials

In order to create PGP signatures, you will need akey pair (instructions on creating akey pair using the GnuPG
tools can be found in the GnuPG HOWTOs). Y ou need to provide the signing plugin with your key information,
which means three things:

® Thepublic key ID (an 8 character hexadecimal string).
® The absolute path to the secret key ring file containing your private key.
® The passphrase used to protect your private key.

These items must be supplied as the values of properties si gni ng. keyl d, si gni ng. secr et KeyRi ngFi | e
, and si gni ng. passwor d respectively. Given the personal and private nature of these values, a good
practice isto store them in the user gr adl e. pr operti es file (described in Section 14.2, “Gradle properties
and system properties’).

si gni ng. keyl d=24875D73
si gni ng. passwor d=secr et

si gni ng. secr et KeyRi ngFi | e=/ User s/ ne/ . gnupg/ secri ng. gpg

Page 308 of 448

http://www.pgpi.org/
https://docs.sonatype.org/display/Repository/Central+Sync+Requirements
http://www.gnupg.org/
http://www.gnupg.org/
http://www.gnupg.org/documentation/howtos.html

If specifying thisinformation in the user gr adl e. pr operti es fileisnot feasible for your environment, you
can source the information however you need to and set the project properties manually.

i mport org.gradl e. plugins. si gning. Si gn

gradl e. t askG aph. whenReady { taskG aph ->
if (taskG aph.all Tasks.any { it instanceof Sign }) {
/1 Use Java 6's console to read fromthe console (no good for
/1 a Cl environnent)
Consol e consol e = System consol e()
console.printf "\n\nWe have to sign some things in this build." +
"\ n\ nPl ease enter your signing details.\n\n"

def id = consol e.readLi ne("PGP Key Id: ")
def file = consol e.readLi ne("PGP Secret Key Ring File (absolute path): ")
def password = consol e.readPassword(" PGP Private Key Password: ")

al | projects { ext."signing.keyld" =id }
al | projects { ext."signing.secretKeyRingFile" = file }

al | projects { ext."signing.password" = password }

consol e. printf "\ nThanks.\n\n"

54.3. Specifying what to sign

Aswell as configuring how things are to be signed (i.e. the signatory configuration), you must also specify what
is to be signed. The Signing plugin provides a DSL that allows you to specify the tasks and/or configurations
that should be signed.

54.3.1. Signing Configurations

It is common to want to sign the artifacts of a configuration. For example, the Java plugin configures a jar to
build and thisjar artifact is added to the ar chi ves configuration. Using the Signing DSL, you can specify that
al of the artifacts of this configuration should be signed.

Example 54.2. Signing a configur ation

buil d. gradl e

si gni ng {
sign configurations. archives

}

Thiswill create atask (of type Si gn) in your project named “si gnAr chi ves”, that will build any ar chi ves
artifacts (if needed) and then generate signatures for them. The signature files will be placed alongside the
artifacts being signed.

Page 309 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.signing.Sign.html

Example 54.3. Signing a configuration output
Output of gr adl e si gnAr chi ves

> gradl e signArchives
:conpi |l eJava

: processResour ces

:cl asses

tjar

:signArchives

BU LD SUCCESSFUL

Total tinme: 1 secs

54.3.2. Signing Tasks

In some cases the artifact that you need to sign may not be part of a configuration. In this case you can directly
sign the task that produces the artifact to sign.

Example 54.4. Signing a task

buil d. gradle

task stuffzZip (type: Zip) {
baseNane = "stuff”
from"src/stuff"

}

signi ng {
sign stuffZp

}

Thiswill create atask (of type Si gn) in your project named “si gnSt uf f Zi p”, that will build the input task's
archive (if needed) and then sign it. The signature file will be placed alongside the artifact being signed.

Example 54.5. Signing a task output
Output of gradl e si gnStuffZip
> gradl e signStuffzip
cstuffzip
:signStuffzip
BU LD SUCCESSFUL

Total tinme: 1 secs

For atask to be “signable”, it must produce an archive of some type. Tasks that do this are the Tar , Zi p, Jar,
War and Ear tasks.

Page 310 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.signing.Sign.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ear.Ear.html

54.3.3. Conditional Signing

A common usage pattern is to only sign build artifacts under certain conditions. For example, you may not wish
to sign artifacts for non release versions. To achieve this, you can specify that signing is only required under
certain conditions.

Example 54.6. Conditional signing

bui I d. gradl e

version = '1. 0- SNAPSHOT'
ext.i sRel easeVersion = !version.endsWth(" SNAPSHOT")

signi ng {
required { isRel easeVersion & gradl e.taskG aph. hasTask("upl oadArchi ves") }
si gn configurations. archives

In this example, we only want to require signing if we are building a release version and we are going to publish

it. Because we are inspecting the task graph to determine if we are going to be publishing, we must set the si gni n¢
property to a closure to defer the evaluation. See Si gni ngExt ensi on. set Requi red() for more
information.

54.4. Publishing the signatures

When specifying what is to be signed via the Signing DSL, the resultant signature artifacts are automatically
added to the si gnat ur es and ar chi ves dependency configurations. This means that if you want to upload
your signatures to your distribution repository aong with the artifacts you simply execute the upl oadAr chi ves
task as normal.

54.5. Signing POM files

When deploying signatures for your artifacts to a Maven repository, you will also want to sign the published
POM file. The signing plugin adds a si gni ng. si gnPom() (see: Si gni ngExt ensi on. si gnPon())
method that can be used in the bef or eDepl oynent () block in your upload task configuration.

Example 54.7. Signing a POM for deployment

buil d. gradl e

upl oadAr chi ves {
repositories {
mavenDepl oyer {

bef or eDepl oynent { MavenDepl oyment depl oynent -> signi ng. si gnPon(depl o

When signing is not required and the POM cannot be signed due to insufficient configuration (i.e. no credentials

Page 311 of 448

http://www.gradle.org/docs/2.3/groovydoc/org/gradle/plugins/signing/SigningExtension.html#setRequired(java.lang.Object)
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.signing.SigningExtension.html#org.gradle.plugins.signing.SigningExtension:signPom(org.gradle.api.artifacts.maven.MavenDeployment, groovy.lang.Closure)

for signing) then the si gnPon() method will silently do nothing.

Page 312 of 448

55

Building native binaries

The Gradle support for building native binaries is currently incubating. Please be aware that the DSL and
other configuration may changein later Gradle versions.

The various native binary plugins add support for building native software components, such as executables or
shared libraries, from code written in C++, C and other languages. While many excellent build tools exist for
this space of software development, Gradle offers developers its trademark power and flexibility together with
dependency management practices more traditionally found in the VM development space.

55.1. Supported languages

The following source languages are currently supported:

e C

® C++

® Objective-C

® Objective-C++

* Assembly

® \Windows resources

55.2. Tool chain support

Gradle offers the ability to execute the same build using different tool chains. When you build a native binary,
Gradle will attempt to locate atool chain installed on your machine that can build the binary. Y ou can fine tune
exactly how thisworks, see Section 55.14, “Tool chains’ for details.

The following tool chains are supported:

Page 313 of 448

Operating Tool Chain Notes

System
Linux GCC
Linux Clang
Mac OS X XCode Uses the Clang tool chain bundled with X Code.
Windows Visua C++ Windows XP and later, Visua C++ 2010 and later.
Windows GCC with Cywin Windows XP and later.
32
Windows GCC with MinGW Windows XP and later. Mingw-w64 is currently not

supported.

The following tool chains are unofficially supported. They generally work fine, but are not tested continuously:

Operating System Tool Chain Notes

Mac OS X GCC from Macports

Mac OS X Clang from Macports

Windows GCC with Cywin 64 Windows XP and later.
UNIX-like GCC

UNIX-like Clang

55.3. Tool chain installation

Note that if you are using GCC then you currently need to install support for C++, even if you are not
building from C++ source. This caveat will be removed in afuture Gradle version.

To build native binaries, you will need to have a compatible tool chain installed:

55.3.1. Windows

To build on Windows, install a compatible version of Visual Studio. The native plugins will discover the Visua
Studio installations and select the latest version. There is no need to mess around with environment variables or
batch scripts. Thisworks fine from a Cygwin shell or the Windows command-line.

Alternatively, you can install Cygwin with GCC or MinGW. Clang is currently not supported.

55.3.2. OS X

To build on OS X, you should install XCode. The native plugins will discover the X Code installation using the
system PATH.

Page 314 of 448

http://gcc.gnu.org/
http://clang.llvm.org
http://www.microsoft.com/visualstudio/en-us
http://gcc.gnu.org/
http://cygwin.com
http://cygwin.com
http://gcc.gnu.org/
http://www.mingw.org/
http://mingw-w64.sourceforge.net
http://gcc.gnu.org/
http://clang.llvm.org
http://gcc.gnu.org/
http://cygwin.com
http://gcc.gnu.org/
http://clang.llvm.org

The native plugins also work with GCC and Clang bundled with Macports. To use one of the Macports tool
chains, you will need to make the tool chain the default using the port sel ect command and add Macports
to the system PATH.

55.3.3. Linux

To build on Linux, install a compatible version of GCC or Clang. The native plugins will discover GCC or
Clang using the system PATH.

55.4. Component model

To build native binaries using Gradle, your project should define one or more native components. Each
component represents either an executable or a library that Gradle should build. A project can define any
number of components. Gradle does not define any components by default.

For each component, Gradle defines a source set for each language that the component can be built from. A

source set is essentially just a set of source directories containing source files. For example, when you apply the ¢
plugin and define a library called hel | owor | d, Gradle will define, by default, a source set containing the C

source filesin the sr c/ hel | owor | d/ ¢ directory. It will use these source files to build the hel | owor | d

library. Thisis described in more detail below.

For each component, Gradle defines one or more binaries as output. To build a binary, Gradle will take the
source files defined for the component, compile them as appropriate for the source language, and link the result
into a binary file. For an executable component, Gradle can produce executable binary files. For a library
component, Gradle can produce both static and shared library binary files. For example, when you define a
library called hel | owor | d and build on Linux, Gradle will, by default, produce | i bhel | owor | d. so and | i bt
binaries.

In many cases, more than one binary can be produced for a component. These binaries may vary based on the
tool chain used to build, the compiler/linker flags supplied, the dependencies provided, or additional source files
provided. Each native binary produced for a component is referred to as variant. Binary variants are discussed
in detail below.

55.5. Building alibrary

To build either a static or shared native library, you define a library component in the conponent s container.
The following sample defines alibrary called hel | o:

Example 55.1. Defining a library component

bui I d. gradl e

nodel {
conponents {
hel | o(Nati veLi br ar ySpec)

}

Page 315 of 448

A library component is represented using Nat i velLi br ar ySpec. Each library component can produce at
least one shared library binary (Shar edLi br aryBi nar ySpec) and at least one static library binary (
St ati cLi braryBi narySpec).

55.6. Building an executable

To build a native executable, you define an executable component in the conponent s container. The
following sample defines an executable called mai n:

Example 55.2. Defining executable components
buil d. gradl e

nmodel {
conponents {
mai n(Nat i veExecut abl eSpec) {
sour ces {

c.lib library: "hello"

An executable component is represented using Nat i veExecut abl eSpec. Each executable component can
produce at least one executable binary (Nat i veExecut abl eBi nar ySpec).

For each component defined, Gradle adds a Funct i onal Sour ceSet with the same name. Each of these
functional source sets will contain a language-specific source set for each of the languages supported by the
project.

55.7. Tasks

For each Nat i veBi nar ySpec that can be produced by a build, a single lifecycle task is constructed that can
be used to create that binary, together with a set of other tasks that do the actual work of compiling, linking or
assembling the binary.

Component Type Native Binary Type Lifecycle task L ocatia

Nat i veExecut abl eSpec Nati veExecut abl eBi narySpec ${conponent . nane} Exedfupraty

Nat i velLi br ar ySpec Shar edLi br ar yBi nar ySpec ${ conmponent . nane} Shab{guiloj

Nat i velLi brar ySpec Stati cLi braryBi nar ySpec ${ conponent . nane} St ab{ @iLoj

55.7.1. Working with shared libraries

For each executable binary produced, the cpp plugin provides an i nst al | ${ bi nary. nane} task, which
creates adevelopment install of the executable, along with the shared libraries it requires. This allows you to run
the executable without needing to install the shared librariesin their final locations.

Page 316 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.SharedLibraryBinarySpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.StaticLibraryBinarySpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.StaticLibraryBinarySpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.NativeExecutableBinarySpec.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/language/base/FunctionalSourceSet.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.NativeExecutableBinarySpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.SharedLibraryBinarySpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.StaticLibraryBinarySpec.html

55.8. Finding out more about your project

Gradle provides a report that you can run from the command-line that shows some details about the components
and binaries that your project produces. To use this report, just run gr adl e conponent s. Below is an
example of running this report for one of the sample projects:

Page 317 of 448

Example 55.3. The components report
Output of gr adl e comnponent s

> gradl e conmponents
: conponent s

Root proj ect

Source sets
C++ source 'hello:cpp'
src/ hel l o/ cpp

Bi nari es
Shared library 'hello:sharedLibrary’
buil d using task: :helloSharedLibrary
platform current

build type: debug
flavor: default
tool chain: Tool chain 'clang' (d ang)

shared library file:

Static library '"hello:staticLibrary’
build using task: :helloStaticlLibrary
platform current

build type: debug
flavor: default
tool chain: Tool chain 'clang' (d ang)

static library file:

Nati ve executable '

Source sets
C++ source ' mai n: cpp'
src/ mai n/ cpp

Bi nari es
Execut abl e ' mai n: execut abl €'
buil d using task: :nainExecutable

install using task: :install Mai nExecut abl e
platform current

build type: debug

flavor: default

tool chain: Tool chain 'clang" (d ang)

executable file: build/ binaries/ minExecutabl e/ main

pl ugi ns register their conmponents,

Note: currently not all

BU LD SUCCESSFUL
1 secs

Total tinme:

bui | d/ bi nari es/ hel | oShar edLi brary/libhello.dylib

bui | d/ bi nari es/hell oStaticLibrary/libhello.a

SO some conponents may not

Page 318 of 448

55.9. Language support

Presently, Gradle supports building native binaries from any combination of source languages listed below. A
native binary project will contain one or more named Funct i onal Sour ceSet instances (eg 'main’, 'test’,
etc), each of which can contain LanguageSour ceSet s containing source files, one for each language.

e C

® C++

® Objective-C

® Objective-C++

® Assembly

® \Windows resources

55.9.1. C++ sources

C++ language support is provided by means of the' cpp' plugin.

Example 55.4. The'cpp' plugin

buil d. gradl e

apply plugin: '"cpp

C++ sources to be included in a native binary are provided viaa CppSour ceSet , which defines a set of C++
source files and optionally a set of exported header files (for alibrary). By default, for any named component
the CppSour ceSet contains. cpp sourcefilesinsrc/ ${ nane}/ cpp, and header filesin sr c/ ${ nane}/ he.

While the cpp plugin defines these default locations for each CppSour ceSet , it is possible to extend or
override these defaults to allow for adifferent project layout.

Example 55.5. C++ sour ce set

buil d. gradle

sour ces {
cpp {
source {
srcDir "src/source"

include "**/* cpp"

For a library named 'main’, header filesin sr ¢/ mai n/ header s are considered the “public” or “exported”
headers. Header files that should not be exported should be placed inside the sr c/ mai n/ cpp directory
(though be aware that such header files should always be referenced in a manner relative to the file including
them).

Page 319 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.language.cpp.CppSourceSet.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.language.cpp.CppSourceSet.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.language.cpp.CppSourceSet.html

55.9.2. C sources

C language support is provided by means of the' ¢' plugin.

Example 55.6. The'c' plugin
buil d. gradl e

apply plugin: 'c'

C sources to be included in a native binary are provided via a CSour ceSet , which defines a set of C source
files and optionally a set of exported header files (for a library). By default, for any named component the
CSour ceSet contains. ¢ sourcefilesinsr c/ ${ name}/ c, and header filesin sr ¢/ ${ nanme}/ header s.

While the ¢ plugin defines these default locations for each CSour ceSet , it is possible to extend or override
these defaults to allow for a different project layout.

Example 55.7. C sour ce set
buil d. gradl e

sources {
c {
source {
srcDir "src/source"
include "**/*. c"

}
export edHeaders {
srcDir "src/include"

For a library named 'main’, header filesin sr ¢/ mai n/ header s are considered the “public” or “exported”

headers. Header files that should not be exported should be placed inside the sr ¢/ mai n/ ¢ directory (though

be aware that such header files should always be referenced in a manner relative to the file including them).
55.9.3. Assembler sources

Assembly language support is provided by means of the ' assenbl er' plugin.

Example 55.8. The 'assembler' plugin

bui I d. gradl e

apply plugin: '"assenbler’

Assembler sources to be included in a native binary are provided via a Assenbl er Sour ceSet , which
defines a set of Assembler source files. By default, for any named component the Assenbl er Sour ceSet
contains . s source filesunder sr ¢/ ${ nane}/ asm

Page 320 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.language.c.CSourceSet.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.language.c.CSourceSet.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.language.c.CSourceSet.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.language.c.CSourceSet.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.language.assembler.AssemblerSourceSet.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.language.assembler.AssemblerSourceSet.html

55.9.4. Objective-C sources
Objective-C language support is provided by means of the' obj ecti ve-c' plugin.

Example 55.9. The'objective-c' plugin

buil d. gradl e

apply plugin: 'objective-c'

Objective-C sources to be included in a native binary are provided via a Obj ect i veCSour ceSet , which
defines a set of Objective-C source files. By default, for any named component the Cbj ect i veCSour ceSet
contains . msource filesunder sr c/ ${ nane}/ obj ecti veC.

55.9.5. Objective-C++ sources
Objective-C++ language support is provided by means of the' obj ect i ve- cpp' plugin.

Example 55.10. The 'objective-cpp' plugin
buil d. gradl e

apply plugin: 'objective-cpp'

Objective-C++ sources to be included in a native binary are provided via a Cbj ecti veCppSour ceSet ,
which defines a set of Objective-C++ source files. By default, for any named component the
bj ecti veCppSour ceSet contains. nmsource files under sr ¢/ ${ nane}/ obj ect i veCpp.

55.10. Configuring the compiler, assembler and
linker

Each binary to be produced is associated with a set of compiler and linker settings, which include command-line
arguments as well as macro definitions. These settings can be applied to al binaries, an individua binary, or
selectively to agroup of binaries based on some criteria.

Page 321 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.language.objectivec.ObjectiveCSourceSet.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.language.objectivec.ObjectiveCSourceSet.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.language.objectivecpp.ObjectiveCppSourceSet.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.language.objectivecpp.ObjectiveCppSourceSet.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.language.objectivecpp.ObjectiveCppSourceSet.html

Example 55.11. Settingsthat apply to all binaries

bui I d. gradl e

bi naries.all {
/1 Define a preprocessor nacro for every binary
cppConpi | er. defi ne " NDEBUG'

/| Define tool chain-specific conpiler and |inker options
if (toolChain in Gec) {
cppConpi l er.args "-2", "-fno-access-control"
linker.args "-Xinker", "-S"
}
if (tool Chain in Visual Cpp) {
cppConpi l er.args "/ Zi "
|'i nker.args "/ DEBUG

Each binary is associated with a particular Nat i veTool Chai n, alowing settings to be targeted based on this
value.

It iseasy to apply settingsto all binaries of a particular type:

Example 55.12. Settingsthat apply to all shared libraries
buil d. gradl e

/'l For any shared library binaries built with Visual Ct+,
/1 define the DLL EXPORT nacro
bi nari es. wi t hType(Shar edLi br ar yBi nar ySpec) {

if (tool Chain in Visual Cpp) {

cConpiler.args "/Zi"
cConpi |l er. define "DLL EXPORT"

Furthermore, it is possible to specify settings that apply to all binaries produced for a particular execut abl e
orl i brary component:

Page 322 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/nativeplatform/toolchain/NativeToolChain.html

Example 55.13. Settingsthat apply to all binaries produced for the 'main' executable component
buil d. gradl e

nmodel {
conponents {
mai n(Nat i veExecut abl eSpec) {
target Pl atform " x86"
bi naries.all {
if (tool Chain in Visual Cpp) {
sour ces {
pl at f or MAsn(Assenbl er Sour ceSet) {
source.srcDir "src/main/asm.i 386_nasni

}

}

assenbl er.args "/ Zi "

} else {
sour ces {
p!l at f or mMAsn(Assenbl er Sour ceSet) {
source.srcDir "src/min/asmi 386 gcc"

}
}

assenbl er. args "

The example above will apply the supplied configuration to al execut abl e binaries built.

Similarly, settings can be specified to target binaries for a component that are of a particular type: eg all shared
libraries for the main library component.

Example 55.14. Settingsthat apply only to shared libraries produced for the'main’ library component
buil d. gradl e

nmodel {
conponent s {
mai n(Nat i velLi brarySpec) {
bi nari es. wi t hType(Shar edLi br ar yBi nar ySpec) {
/1l Define a preprocessor macro that only applies to shared |ibrari

cppConpi | er. define "DLL_ EXPORT"

55.11. Windows Resources

When using the Vi sual Cpp tool chain, Gradle is able to compile Window Resource (r ¢) files and link them
into a native binary. This functionality is provided by the' wi ndows- r esour ces' plugin.

Page 323 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.toolchain.VisualCpp.html

Example 55.15. The 'windows-resources plugin

bui I d. gradl e

apply plugin: 'w ndows-resources'

Windows resources to be included in a native binary are provided via a W ndowsResour ceSet , which
defines a set of Windows Resource source files. By default, for any named component the
W ndowsResour ceSet contains. r ¢ sourcefilesunder src/ ${ nane}/rc.

As with other source types, you can configure the location of the windows resources that should be included in
the binary.

Example 55.16. Configuring the location of Windows r esour ce sour ces
bui I d-resource-only-dl|.gradl e

sources {
rc {
source {
srcDirs "src/hello/rc"
}
export edHeaders {
srcDirs "src/ hell o/ headers"

You are able to construct a resource-only library by providing Windows Resource sources with no other
language sources, and configure the linker as appropriate:

Example 55.17. Building a resour ce-only dll
bui l d-resource-only-dll.gradle

nodel {
conponent s {
hel | oRes(Nati veLi brarySpec) {
bi naries.all {
rcConpil er.args "/v"
linker.args "/noentry", "/machi ne: x86"
}
sour ces {
rc {
source {
srcDirs "src/hello/rc"
}
export edHeaders {
srcDirs "src/hell o/ headers"

}

Page 324 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.language.rc.WindowsResourceSet.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.language.rc.WindowsResourceSet.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.language.rc.WindowsResourceSet.html

The example above also demonstrates the mechanism of passing extra command-line arguments to the resource
compiler. Ther cConpi | er extension is of type Pr epr ocessi ngTool .

55.12. Library Dependencies

Dependencies for native components are binary libraries that export header files. The header files are used
during compilation, with the compiled binary dependency being used during linking and execution.

55.12.1. Dependencies within the same project

A set of sources may depend on header files provided by another binary component within the same project. A
common example is a native executable component that uses functions provided by a separate native library
component.

Such alibrary dependency can be added to a source set associated with the execut abl e component;

Example 55.18. Providing a library dependency to the sour ce set
buil d. gradl e

sour ces {

cpp {
lib library: "hello"

}

Alternatively, alibrary dependency can be provided directly to the Nat i veExecut abl eBi nary for theexecut

Page 325 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.language.PreprocessingTool.html

Example 55.19. Providing a library dependency to the binary
buil d. gradl e

nmodel {
conponents {
hel | o(Nati veLi brarySpec) {
sour ces {
c {

source {
srcDir "src/source"
include "**/* c"

}

export edHeaders {
srcDir "src/include"

}

}
}

mai n(Nat i veExecut abl eSpec) {
sour ces {
cpp {
source {
srcDir "src/source"
include "**/*. cpp"

}
}

bi naries.all {
/| Each execut abl e binary produced uses the '"hello' static library
lib library: "hello', linkage: 'static'

55.12.2. Project Dependencies

For a component produced in a different Gradle project, the notation is similar.

Page 326 of 448

Example 55.20. Declaring project dependencies

bui I d. gradl e

project(":1ib") {
apply plugin: "cpp"
nmodel {
conponent s {
mai n(Nat i veLi br ar ySpec)

}
}
/1l For any shared library binaries built with Visual Ct+,
/1 define the DLL_EXPORT nacro
bi nari es. wi t hType(Shar edLi br ar yBi nar ySpec) {
if (tool Chain in Visual Cpp) {
cppConpi | er. define "DLL_ EXPORT"

project(":exe") {
apply plugin: "cpp"

nmodel {
conponents {
mai n(Nat i veExecut abl eSpec) {
sour ces {

cpp {
lib project: ":lib'", library: 'nmain'
}

55.13. Native Binary Variants

For each executable or library defined, Gradle is able to build a number of different native binary variants.
Examples of different variants include debug vs release binaries, 32-bit vs 64-bit binaries, and binaries produced
with different custom preprocessor flags.

Binaries produced by Gradle can be differentiated on build type, platform, and flavor. For each of these 'variant
dimensions, it is possible to specify a set of available values as well as target each component at one, some or
al of these. For example, a plugin may define a range of support platforms, but you may choose to only target
Windows-x86 for a particular component.

55.13.1. Build types

A bui | d type determines various non-functional aspects of a binary, such as whether debug information is
included, or what optimisation level the binary is compiled with. Typical build types are 'debug' and 'release’,
but a project is free to define any set of build types.

Page 327 of 448

Example 55.21. Defining build types

bui I d. gradl e

nmodel {
bui | dTypes {
debug

rel ease

If no build types are defined in a project, then a single, default build type called 'debug'’ is added.
For abuild type, a Gradle project will typically define a set of compiler/linker flags per tool chain.

Example 55.22. Configuring debug binaries
buil d. gradle

bi naries.all {
if (tool Chain in Gcc &R buil dType == bui |l dTypes. debug) {
cppConpi l er.args "-g"
}
if (tool Chain in Visual Cpp && buil dType == buil dTypes. debug) {

cppConpi l er.args '/ Zi'
cppConpi | er. defi ne ' DEBUG
|'i nker.args '/ DEBUG

At this stage, it is completely up to the build script to configure the relevant compiler/linker flags for each
build type. Future versions of Gradle will automatically include the appropriate debug flags for any
‘debug’ build type, and may be aware of various levels of optimisation aswell.

55.13.2. Platform

An executable or library can be built to run on different operating systems and cpu architectures, with a variant
being produced for each platform. Gradle defines each OS/architecture combination as a Nat i vePl at f or m
and a project may define any number of platforms. If no platforms are defined in a project, then a single, default
platform ‘current' is added.

Presently, aPl at f or mconsists of a defined operating system and architecture. As we continue to
develop the native binary support in Gradle, the concept of Platform will be extended to include things
like C-runtime version, Windows SDK, ABI, etc. Sophisticated builds may use the extensibility of Gradle
to apply additional attributes to each platform, which can then be queried to specify particular includes,
preprocessor macros or compiler arguments for a native binary.

Page 328 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/nativeplatform/platform/NativePlatform.html

Example 55.23. Defining platforms
buil d. gradl e

nmodel {
platforms {
x86 {
architecture "x86"

}
x64 {
architecture "x86 64"

}
itani um {
architecture "ia-64"

For a given variant, Gradle will attempt to find a Nat i veTool Chai n that is able to build for the target
platform. Available tool chains are searched in the order defined. See the tool chains section below for more
details.

55.13.3. Flavor

Each component can have a set of named f | avor s, and a separate binary variant can be produced for each
flavor. While the bui | d type and t arget pl atf or mvariant dimensions have a defined meaning in
Gradle, each project is free to define any number of flavors and apply meaning to them in any way.

An example of component flavors might differentiate between 'demo’, 'paid' and 'enterprise’ editions of the
component, where the same set of sourcesis used to produce binaries with different functions.

Example 55.24. Defining flavor s
buil d. gradl e

nodel {
flavors {
engl i sh
french
}
conponent s {
hel | o(Nati veLi brarySpec) {

bi naries.all {
if (flavor == flavors.french) {
cppConpi | er. defi ne " FRENCH"

}

In the example above, a library is defined with a 'english’ and 'french’ flavor. When compiling the ‘french’
variant, a separate macro is defined which leads to a different binary being produced.

If no flavor is defined for a component, then a single default flavor named 'default’ is used.

Page 329 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/nativeplatform/toolchain/NativeToolChain.html

55.13.4. Selecting the build types, platforms and flavors for a component

For a default component, Gradle will attempt to create a native binary variant for each and every combination of
bui | dType, platformand fl avor defined for the project. It is possible to override this on a
per-component basis, by specifying the set of t ar get Bui | dTypes, t ar get Pl at f or mand/or t ar get Fl avo

Example 55.25. Targeting a component at particular platforms
buil d. gradl e

nmodel {
conponents {
hel | o(Nati veLi brarySpec) {
target Pl atform " x86"
target Pl atform " x64"

}
mai n(Nat i veExecut abl eSpec) {
target Pl atform " x86"

target Pl atform " x64"
sour ces {
cpp.lib library: "hello', linkage: 'static'

Here you can see that the Tar get edNat i veConponent . t ar get Pl at f or n{) method is used to specify
aplatform that the Nat i veExecut abl eSpec named mai n should be built for.

A similar mechanism exists for selecting Tar get edNat i veConponent . t ar get Bui | dTypes() and
Tar get edNat i veConponent . t ar get Fl avor s() .

55.13.5. Building all possible variants

When a set of build types, target platforms, and flavors is defined for a component, a Nat i veBi nar ySpec
model element is created for every possible combination of these. However, in many casesit is not possible to
build a particular variant, perhaps because no tool chain is available to build for a particular platform.

If a binary variant cannot be built for any reason, then the Nat i veBi nar ySpec associated with that variant
will not be bui | dabl e. It is possible to use this property to create atask to generate all possible variants on a
particular machine.

Example 55.26. Building all possible variants

buil d. gradle

task buil dAl | Execut abl es {
dependsOn bi nari es. wi t hType(Nati veExecut abl eBi nary) . mat chi ng {
it.buildable

}

Page 330 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.TargetedNativeComponent.html#org.gradle.nativeplatform.TargetedNativeComponent:targetPlatform(java.lang.String)
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.TargetedNativeComponent.html#org.gradle.nativeplatform.TargetedNativeComponent:targetBuildTypes(java.lang.String[])
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.TargetedNativeComponent.html#org.gradle.nativeplatform.TargetedNativeComponent:targetFlavors(java.lang.String[])
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.TargetedNativeComponent.html#org.gradle.nativeplatform.TargetedNativeComponent:targetFlavors(java.lang.String[])
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.NativeBinarySpec.html

55.14. Tool chains

A single build may utilize different tool chains to build variants for different platforms. To this end, the core
'native-binary' plugins will attempt to locate and make available supported tool chains. However, the set of tool
chains for a project may also be explicitly defined, allowing additional cross-compilers to be configured as well
as allowing the install directoriesto be specified.

55.14.1. Defining tool chains

The supported tool chain types are:

* Ccc
®* d ang
* Visual Cpp

Example 55.27. Defining tool chains
buil d. gradl e

nodel {
t ool Chai ns {

vi sual Cpp(Vi sual Cpp) {
/1l Specify the installDir if Visual Studio cannot be | ocated
/1l installDir "C/Apps/Mcrosoft Visual Studio 10.0"

}

gce(Cee) {
/1 Uncomment to use a GCC install that is not in the PATH
/| path "/usr/bin/gcc"

}
cl ang(C ang)

Each tool chain implementation allows for a certain degree of configuration (see the API documentation for
more details).

55.14.2. Using tool chains

It is not necessary or possible to specify the tool chain that should be used to build. For a given variant, Gradle
will attempt to locate aNat i veTool Chai n that is able to build for the target platform. Available tool chains
are searched in the order defined.

When aplatform does not define an architecture or operating system, the default target of the tool chainis
assumed. So if aplatform does not define avalue for oper at i ngSyst em Gradle will find the first
available tool chain that can build for the specified ar chi t ect ur e.

The core Gradle tool chains are able to target the following architectures out of the box. In each case, the tool
chain will target the current operating system. See the next section for information on cross-compiling for other
operating systems.

Page 331 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.toolchain.Gcc.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.toolchain.Clang.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.toolchain.VisualCpp.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/nativeplatform/toolchain/NativeToolChain.html

Tool Chain Architectures

GCC x86, x86_64
Clang x86, x86_64
Visual C++ x86, x86_64, ia-64

So for GCC running on linux, the supported target platforms are 'linux/x86" and 'linux/x86_64'. For GCC
running on Windows via Cygwin, platforms ‘windows/x86' and 'windows/x86_64' are supported. (The Cygwin
POSIX runtimeis not yet modelled as part of the platform, but will be in the future.)

If no target platforms are defined for a project, then all binaries are built to target a default platform named
‘current’. This default platform does not specify any ar chi t ect ur e or oper ati ngSyst emvalue, hence
using the default values of the first available tool chain.

Gradle provides a hook that allows the build author to control the exact set of arguments passed to atool chain
executable. This enables the build author to work around any limitations in Gradle, or assumptions that Gradle
makes. The arguments hook should be seen as a 'last-resort’ mechanism, with preference given to truly
modelling the underlying domain.

Example 55.28. Reconfiguretool arguments
buil d. gradl e

nodel {
t ool Chai ns {
vi sual Cpp(Vi sual Cpp) {

eachPl at f orm {

cppConpi | er.wi t hArgunments { args ->
args << "- DFRENCH'

}

}

}
cl ang(d ang) {

eachPl atf orm {
cConpil er.wi t hArgunments { args ->
Col | ections. replaceAll (args, "CUSTOM', "-DFRENCH")
}
|l i nker.w thArgunments { args ->
args. renove " CUSTOM!'

}

staticLi bArchi ver.withArgunents { args ->
args. renove " CUSTOM'

}

55.14.3. Cross-compiling with GCC

Cross-compiling is possible with the Gcc and Cl ang tool chains, by adding support for additional target
platforms. This is done by specifying a target platform for a toolchain. For each target platform a custom
configuration can be specified.

Page 332 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.toolchain.Gcc.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.toolchain.Clang.html

Example 55.29. Defining tar get platforms
buil d. gradl e

nmodel {
t ool Chai ns {
gee(Cee) {
target ("arm'){

cppConpi | er. wi thArgunents { args ->
args << "-nB2"

}

|li nker.w t hArgunents { args ->
args << "-nB2"

}

}

target ("sparc")

}
}

platforns {
arm {
architecture "arnf
}
sparc {
architecture "sparc”
}
}

conponent s {
mai n(Nat i veExecut abl eSpec) {
targetPl atform "arni
target Pl atform "sparc”

55.15. Visual Studio IDE integration

Gradle has the ability to generate Visua Studio project and solution files for the native components defined in
your build. This ability is added by the vi sual - st udi o plugin. For a multi-project build, all projects with
native components should have this plugin applied.

When the vi sual - st udi o plugin is applied, a task name ${ conrponent . nane} Vi sual St udi o is
created for each defined component. This task will generate a Visual Studio Solution file for the named
component. This solution will include a Visual Studio Project for that component, as well as linking to project
files for each depended-on binary.

The content of the generated visual studio files can be modified via API hooks, provided by the vi sual St udi o
extension. Take alook at the 'visual-studio’ sample, or see Vi sual St udi oExt ensi on. get Proj ect s()
and Vi sual St udi oExt ensi on. get Sol uti ons() inthe APl documentation for more details.

Page 333 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.ide.visualstudio.VisualStudioExtension.html#org.gradle.ide.visualstudio.VisualStudioExtension:projects
http://www.gradle.org/docs/2.3/dsl/org.gradle.ide.visualstudio.VisualStudioExtension.html#org.gradle.ide.visualstudio.VisualStudioExtension:solutions

55.16. CUnit support

The Gradle cuni t plugin provides support for compiling and executing CUnit tests in your native-binary
project. For each Nat i veExecut abl eSpec and Nat i veLi br ar ySpec defined in your project, Gradle
will create amatching CUni t Test Sui t eSpec component, named ${ conponent . nane} Test .

55.16.1. CUnit sources

Gradle will create a CSour ceSet named 'cunit' for each CUni t Test Sui t eSpec component in the project.
This source set should contain the cunit test files for the component sources. Source files can be located in the
conventional location (src/ ${ conponent . nane} Test/ cunit) or can be configured like any other
source set.

Gradleinitialises the CUnit test registry and executes the tests, utilising some generated CUnit launcher sources.
Gradle will expect and call a function with the signature voi d gradl e_cunit _regi st er () that you can
use to configure the actual CUnit suites and tests to execute.

Example 55.30. Registering CUnit tests
suite_operators.c

#i ncl ude <CUni t/ Basi c. h>
#i ncl ude "gradl e_cunit_register.h"
#i ncl ude "test_operators. h"

int suite_ init(void) {
return O;

}

int suite_clean(void) {
return O;

}

void gradle_cunit_register() {
CU pSuite pSuiteMath = CU add_suite("operator tests", suite_init, suite_clean)]
CU add_test (pSuiteMath, "test plus", test_plus);
CU_add_t est (pSuiteMath, "test_m nus", test_minus);

Due to this mechanism, your CUnit sources may not contain a mai n method since thiswill clash with the
method provided by Gradle.

55.16.2. Building CUnit executables

A CUnit Test SuiteSpec component has an associated NativeExecutabl eSpec or
Nat i veLi br ar ySpec component. For each Nat i veBi nar ySpec configured for the main component, a
matching CUni t Test Sui t eBi nar ySpec will be configured on the test suite component. These test suite
binaries can be configured in asimilar way to any other binary instance:

Page 334 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteSpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.language.c.CSourceSet.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteSpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteSpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/nativeplatform/test/cunit/CUnitTestSuiteBinarySpec.html

Example 55.31. Registering CUnit tests
buil d. gradl e

bi nari es. wi t hType(CUni t Test Sui t eBi narySpec) {
lib library: "cunit", Iinkage: "static"

if (flavor == flavors.failing) {
cConpi | er. define "PLUS BROKEN'

}

Both the CUnit sources provided by your project and the generated launcher require the core CUnit
headers and libraries. Presently, this library dependency must be provided by your project for each
CUni t Test Sui t eBi nar ySpec.

55.16.3. Running CUnit tests

For each CUni t Test Sui t eBi nar ySpec, Gradle will create atask to execute this binary, which will run all
of the registered CUnit tests. Test results will be found inthe ${ bui | d. dir} /test-resul t s directory.

Page 335 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/nativeplatform/test/cunit/CUnitTestSuiteBinarySpec.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/nativeplatform/test/cunit/CUnitTestSuiteBinarySpec.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/nativeplatform/test/cunit/CUnitTestSuiteBinarySpec.html

Example 55.32. Running CUnit tests

bui I d. gradl e

apply plugin: "c"
apply plugin: "cunit"

nmodel {
flavors {
passi ng
failing
}
platforns {
x86 {
architecture "x86"

}
}
repositories {
libs(PrebuiltLibraries) {
cunit {
headers.srcDir "lib/cunit/2.1-2/include"
bi nari es. w thType(StaticLi braryBinary) {
staticLibraryFile =
file("lib/cunit/2.1-2/1ib/" +
findCUnitLibForPlatforn{(targetPlatform)

}
}
conponents {
oper at or s(Nat i veLi brarySpec) {
target Pl atform " x86"
}
}

}
bi nari es. wi t hType(CUni t Test Sui t eBi narySpec) {

lib library: "cunit", |inkage: "static"

if (flavor == flavors.failing) {
cConpi |l er. defi ne "PLUS BROKEN'

}

Note: The code for this example can be found at sanpl es/ nati ve- bi nari es/ cunit inthe ‘-al’
distribution of Gradle.

Output of gradl e -q runFai |l i ngOper at or sTest CUni t Exe
> gradl e -q runFailingQperatorsTest CUni t Exe
There were test failures:

1. /hone/user/gradl e/ sanpl es/ nati ve-hbi naries/cunit/src/operatorsTest/c/test_plus.c:
2. /hone/user/ gradl e/ sanpl es/ nati ve-bi nari es/cunit/src/operatorsTest/c/test_plus.c:

The current support for CUnit is quite rudimentary. Plans for future integration include:

Page 336 of 448

Allow tests to be declared with Javadoc-style annotations.
Improved HTML reporting, similar to that available for JUnit.
Real-time feedback for test execution.

Support for additional test frameworks.

Page 337 of 448

56

TheBuild Lifecycle

We said earlier that the core of Gradle is a language for dependency based programming. In Gradle terms this
means that you can define tasks and dependencies between tasks. Gradle guarantees that these tasks are
executed in the order of their dependencies, and that each task is executed only once. These tasks form a

Directed Acyclic Graph. There are build tools that build up such a dependency graph as they execute their tasks.
Gradle builds the complete dependency graph before any task is executed. Thislies at the heart of Gradle and
makes many things possible which would not be possible otherwise.

Your build scripts configure this dependency graph. Therefore they are strictly speaking build configuration
scripts.

56.1. Build phases

A Gradle build has three distinct phases.

Initialization
Gradle supports single and multi-project builds. During the initialization phase, Gradle determines which
projects are going to take part in the build, and creates a Pr oj ect instance for each of these projects.

Configuration
During this phase the project objects are configured. The build scripts of all projects which are part of the
build are executed. Gradle 1.4 introduced an incubating opt-in feature called configuration on demand. In
this mode, Gradle configures only relevant projects (see Section 57.1.1.1, “Configuration on demand”).

Execution
Gradle determines the subset of the tasks, created and configured during the configuration phase, to be
executed. The subset is determined by the task name arguments passed to the gradle command and the
current directory. Gradle then executes each of the selected tasks.

56.2. Settingsfile

Beside the build script files, Gradle defines a settings file. The settings file is determined by Gradle via a
naming convention. The default name for this file is set ti ngs. gr adl e. Later in this chapter we explain
how Gradle looks for a settings file.

The settings file is executed during the initialization phase. A multiproject build must haveaset t i ngs. gradl e
filein the root project of the multiproject hierarchy. It is required because the settings file defines which projects
are taking part in the multi-project build (see Chapter 57, Multi-project Builds). For a single-project build, a

Page 338 of 448

http://en.wikipedia.org/wiki/Directed_acyclic_graph
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html

settings file is optional. Besides defining the included projects, you might need it to add libraries to your build
script classpath (see Chapter 60, Organizing Build Logic). Let's first do some introspection with a single project
build:

Example 56.1. Single project build

settings.gradle

println 'This is executed during the initialization phase.

buil d. gradl e

println 'This is executed during the configuration phase.

task configured {
println 'This is al so executed during the configuration phase.

}

task test << {
println 'This is executed during the execution phase.

}

task testBoth {
doFirst {
println 'This is executed first during the execution phase.
}
doLast {
println 'This is executed |ast during the execution phase.

}

println 'This is executed during the configuration phase as well.

Output of gr adl e test testBoth

> gradle test testBoth

This is executed during the initialization phase.

This is executed during the configuration phase.

This is also executed during the configuration phase.
This is executed during the configuration phase as well.
jtest

This is executed during the execution phase.

:testBoth

This is executed first during the execution phase.

This is executed |ast during the execution phase.

BU LD SUCCESSFUL

Total tinme: 1 secs

For a build script, the property access and method calls are delegated to a project object. Similarly property
access and method calls within the settings file is delegated to a settings object. Look at the Set t i ngs classin
the APl documentation for more information.

Page 339 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.initialization.Settings.html

56.3. Multi-project builds

A multi-project build is a build where you build more than one project during a single execution of Gradle. You
have to declare the projects taking part in the multiproject build in the settings file. There is much more to say
about multi-project buildsin the chapter dedicated to this topic (see Chapter 57, Multi-project Builds).

56.3.1. Project locations

Multi-project builds are always represented by a tree with a single root. Each element in the tree represents a
project. A project has a path which denotes the position of the project in the multi-project build tree. In most
cases the project path is consistent with the physical location of the project in the file system. However, this
behavior is configurable. The project tree is created in the set ti ngs. gr adl e file. By default it is assumed
that the location of the settings file is also the location of the root project. But you can redefine the location of
the root project in the settings file.

56.3.2. Building the tree

In the settings file you can use a set of methods to build the project tree. Hierarchical and flat physical layouts
get special support.

56.3.2.1. Hierarchical layouts

Example 56.2. Hierar chical layout

settings.gradle

include 'projectl', 'project2:child , 'project3:childl

Thei ncl ude method takes project paths as arguments. The project path is assumed to be equal to the relative
physica file system path. For example, a path 'services.api' is mapped by default to a folder 'services/api’
(relative from the project root). Y ou only need to specify the leaves of the tree. This means that the inclusion of
the path 'services:hotels.api' will result in creating 3 projects: 'services, 'services.hotels and 'services:hotels:api'.

56.3.2.2. Flat layouts

Example 56.3. Flat layout
settings.gradle

i ncl udeFl at 'project3', 'projectd

Thei ncl udeFl at method takes directory names as an argument. These directories need to exist as siblings
of the root project directory. The location of these directories are considered as child projects of the root project
in the multi-project tree.

Page 340 of 448

56.3.3. Modifying elements of the project tree

The multi-project tree created in the settings file is made up of so called project descriptors. You can modify
these descriptorsin the settings file at any time. To access a descriptor you can do:

Example 56.4. M odification of elements of the project tree

settings.gradle

println rootProject.nane

println project(':projectA).nane

Using this descriptor you can change the name, project directory and build file of a project.

Example 56.5. M odification of elements of the project tree
settings.gradle

root Proj ect.name = ' nain'
project(':projectA").projectDir = new File(settingsDir, '../ny-project-a')

project(':projectA).buildFileName = 'projectA gradle’

Look at the Pr oj ect Descri pt or classinthe APl documentation for more information.

56.4. Initialization

How does Gradle know whether to do a single or multiproject build? If you trigger a multiproject build from a
directory with a settings file, things are easy. But Gradle also alows you to execute the build from within any
subproject taking part in the build. [20] 1 you execute Gradle from within a project withno set ti ngs. gr adl e
file, Gradle looksfor aset ti ngs. gr adl e filein the following way:

® |tlooksin adirectory called mast er which hasthe same nesting level asthe current dir.

* |f not found yet, it searches parent directories.

* |f not found yet, the build is executed as a single project build.

® |[f asettings.gradl e fileis found, Gradle checks if the current project is part of the multiproject
hierarchy defined in the found set ti ngs. gr adl e file. If not, the build is executed as a single project
build. Otherwise amultiproject build is executed.

What is the purpose of this behavior? Gradle needs to determine whether the project you arein is a subproject of
a multiproject build or not. Of course, if it is a subproject, only the subproject and its dependent projects are
built, but Gradle needs to create the build configuration for the whole multiproject build (see Chapter 57,

Multi-project Builds). You can use the - u command line option to tell Gradle not to look in the parent hierarchy
forasettings. gradl e file. The current project is then always built as a single project build. If the current
project containsaset ti ngs. gr adl e file, the - u option has no meaning. Such a build is always executed as:

® asingle project build, if theset t i ngs. gr adl e file does not define a multiproject hierarchy
* amultiproject build, if theset t i ngs. gr adl e file does define amultiproject hierarchy.

Page 341 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/initialization/ProjectDescriptor.html

The automatic search for a setti ngs. gradl e file only works for multi-project builds with a physical
hierarchical or flat layout. For aflat layout you must additionally follow the naming convention described above
(“mast er "). Gradle supports arbitrary physical layouts for a multiproject build, but for such arbitrary layouts
you need to execute the build from the directory where the settings file is located. For information on how to run
partial builds from the root see Section 57.4, “Running tasks by their absolute path”.

Gradle creates a Project object for every project taking part in the build. For a multi-project build these are the
projects specified in the Settings object (plus the root project). Each project object has by default a name equal
to the name of its top level directory, and every project except the root project has a parent project. Any project
may have child projects.

56.5. Configuration and execution of asingle
project build

For a single project build, the workflow of the after initialization phases are pretty simple. The build script is
executed against the project object that was created during the initialization phase. Then Gradle looks for tasks
with names equal to those passed as command line arguments. If these task names exist, they are executed as a
separate build in the order you have passed them. The configuration and execution for multi-project builds is
discussed in Chapter 57, Multi-project Builds.

56.6. Responding to the lifecycle in the build script

Your build script can receive notifications as the build progresses through its lifecycle. These natifications
generally take two forms: Y ou can either implement a particular listener interface, or you can provide a closure
to execute when the notification is fired. The examples below use closures. For details on how to use the listener
interfaces, refer to the APl documentation.

56.6.1. Project evaluation

Y ou can receive a notification immediately before and after a project is evaluated. This can be used to do things
like performing additional configuration once all the definitions in a build script have been applied, or for some
custom logging or profiling.

Below isan examplewhich adds at est task to each project which hasahasTest s property value of true.

Page 342 of 448

Example 56.6. Adding of test task to each project which has certain property set

bui I d. gradl e

al | projects {
after Eval uate { project ->
if (project.hasTests) {
println "Adding test task to $project”
project.task('test') << {

println "Running tests for $project"

proj ect A gradl e

hasTests = true

Output of gradl e -q test

> gradle -q test
Adding test task to project ':projectA
Running tests for project ':projectA

This example uses method Pr oj ect . af t er Eval uat e() to add a closure which is executed after the
project is evaluated.

It is also possible to receive notifications when any project is evaluated. This example performs some custom
logging of project evaluation. Notice that the af t er Pr oj ect notification is received regardless of whether
the project evaluates successfully or fails with an exception.

Example 56.7. Notifications

bui I d. gradl e

gradl e. afterProj ect {project, projectState ->
if (projectState.failure) {
println "Eval uati on of $project FAlILED'

} else {
println "Eval uati on of $project succeeded"

}

Output of gradl e -q test
> gradle -q test
Eval uation of root project 'buildProjectEval uateEvents' succeeded

Eval uation of project ':projectA succeeded
Eval uation of project ':projectB FAILED

You canaso add aPr oj ect Eval uati onLi st ener tothe G adl e to receive these events.

Page 343 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/ProjectEvaluationListener.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.invocation.Gradle.html

56.6.2. Task creation

You can receive a notification immediately after a task is added to a project. This can be used to set some

default values or add behaviour before the task is made available in the build file.

The following example setsthe sr cDi r property of each task asit is created.

Example 56.8. Setting of certain property to all tasks

bui I d. gradl e

t asks. whenTaskAdded { task ->
task.ext.srcDir = 'src/main/java'

}

task a

println "source dir is $a.srcDr"

Outputof gradle -q a

> gradle -q a
source dir is src/main/java

Youcan asoadd an Acti on toaTaskCont ai ner to receive these events.

56.6.3. Task execution graph ready

Y ou can receive a notification immediately after the task execution graph has been populated. We have seen this

already in Section 6.13, “ Configure by DAG”.

You can also add a TaskExecut i onGr aphLi st ener to the TaskExecut i onG aph to receive these

events.

56.6.4. Task execution

Y ou can receive a naotification immediately before and after any task is executed.

The following example logs the start and end of each task execution. Notice that the af t er Task notification is

received regardless of whether the task compl etes successfully or fails with an exception.

Page 344 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/Action.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/tasks/TaskContainer.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/execution/TaskExecutionGraphListener.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/execution/TaskExecutionGraph.html

Example 56.9. Logging of start and end of each task execution
buil d. gradl e

task ok

task broken(dependsOn: ok) << {
t hrow new Runti meExcepti on(' broken")

}

gradl e. t askG aph. bef oreTask { Task task ->
println "executing $task ..."

}

gradl e. t askG aph. af ter Task { Task task, TaskState state ->
if (state.failure) {
println "FAl LED'
}
el se {
println "done"

}

Output of gr adl e -qg broken

> gradle -qg broken
executing task ':ok'
done

executing task ':broken'
FAI LED

YoucanasouseaTaskExecuti onlLi st ener tothe TaskExecut i onG aph to receive these events.

[20] Gradle supports partial multiproject builds (see Chapter 57, Multi-project Builds).

Page 345 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/execution/TaskExecutionListener.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/execution/TaskExecutionGraph.html

5/

Multi-project Builds

The powerful support for multi-project builds is one of Gradle's unique selling points. Thistopic is also the most
intellectually challenging.

A multi-project build in gradle consists of one root project, and one or more subprojects that may also have
subprojects.

57.1. Cross project configuration

While each subproject could configure itself in complete isolation of the other subprojects, it is common that
subprojects share common traits. It is then usually preferable to share configurations among projects, so the
same configuration affects several subprojects.

Let's start with a very simple multi-project build. Gradle is a general purpose build tool at its core, so the
projects don't have to be Java projects. Our first examples are about marine life.

57.1.1. Configuration and execution

Section 56.1, “Build phases’ describes the phases of every Gradle build. Let's zoom into the configuration and
execution phases of a multi-project build. Configuration here means executing the bui | d. gr adl e file of a
project, which implies e.g. downloading all plugins that were declared using 'appl y pl ugi n'. By default, the
configuration of all projects happens before any task is executed. This means that when a single task, from a
single project is requested, all projects of multi-project build are configured first. The reason every project
needs to be configured is to support the flexibility of accessing and changing any part of the Gradle project
model.

57.1.1.1. Configuration on demand

The Configuration injection feature and access to the complete project model are possible because every project
is configured before the execution phase. Yet, this approach may not be the most efficient in a very large
multi-project build. There are Gradle builds with a hierarchy of hundreds of subprojects. The configuration time
of huge multi-project builds may become noticeable. Scalability is an important requirement for Gradle. Hence,
starting from version 1.4 a new incubating ‘configuration on demand' mode is introduced.

Configuration on demand mode attempts to configure only projects that are relevant for requested tasks, i.e. it
only executes the bui | d. gradl e file of projects that are participating in the build. This way, the
configuration time of a large multi-project build can be reduced. In the long term, this mode will become the
default mode, possibly the only mode for Gradle build execution. The configuration on demand feature is
incubating so not every build is guaranteed to work correctly. The feature should work very well for

Page 346 of 448

multi-project builds that have decoupled projects (Section 57.9, “Decoupled Projects’). In “configuration on
demand” mode, projects are configured as follows:

® Theroot project is always configured. Thisway the typical common configuration is supported (allprojects
or subprojects script blocks).

® The project in the directory where the build is executed is also configured, but only when Gradle is executed
without any tasks. Thisway the default tasks behave correctly when projects are configured on demand.

* The standard project dependencies are supported and makes relevant projects configured. If project A hasa
compile dependency on project B then building A causes configuration of both projects.

® Thetask dependencies declared viatask path are supported and cause relevant projects to be configured.
Example: someTask.dependsOn(":someOtherProject:someOther Task™)

* A task requested viatask path from the command line (or Tooling API) causes the relevant project to be
configured. For example, building 'projectA:projectB:someTask' causes configuration of projectB.

Eager to try out this new feature? To configure on demand with every build run see Section 20.1, “Configuring
the build environment via gradle.properties’. To configure on demand just for a given build please see
Appendix D, Gradle Command Line.

57.1.2. Defining common behavior
Let's look at some examples with the following project tree. This is a multi-project build with a root project
named wat er and a subproject named bl uewhal e.
Example 57.1. Multi-project tree - water & bluewhale projects
Build layout

wat er/
bui | d. gradl e

settings. gradl e
bl uewhal e/

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/firstExanpl
inthe ‘-all’ distribution of Gradle.

settings.gradle

i ncl ude ' bl uewhal e’

And where is the build script for the bl uewhal e project? In Gradle build scripts are optional. Obviously for a
single project build, a project without a build script doesn't make much sense. For multiproject builds the
situation is different. Let'slook at the build script for the wat er project and execute it:

Page 347 of 448

Example 57.2. Build script of water (parent) project
buil d. gradl e

Closure cl = { task -> println "I'm $task. proj ect.nane" }
task hello << cl
project (' :bluewhale") {

task hello << cl

}

Output of gradl e -q hell o

> gradle -q hello
I'' mwat er
1" m bl uewhal e

Gradle allows you to access any project of the multi-project build from any build script. The Project API
provides amethod called pr oj ect () , which takes a path as an argument and returns the Project object for this
path. The capability to configure a project build from any build script we call cross project configuration.

Gradle implements this via configuration injection.

We are not that happy with the build script of the wat er project. It isinconvenient to add the task explicitly for
every project. We can do better. Let'sfirst add another project called kri | | to our multi-project build.
Example 57.3. M ulti-project tree - water, bluewhale & krill projects

Build layout

wat er /
bui | d. gradl e

settings. gradl e
bl uewhal e/
krill/

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/addKrill/wa
inthe*-al’ distribution of Gradle.

settings.gradle

i ncl ude ' bl uewhale', "krill'

Now we rewrite the wat er build script and boil it down to asingleline.

Page 348 of 448

Example 57.4. Water project build script

bui I d. gradl e

al | projects {
task hello << { task -> println "I'm $task. proj ect. nane" }

}

Output of gradl e -q hello

> gradle -q hello
I'''m wat er

"' m bl uewhal e
I"mkrill

Is this cool or is this cool? And how does this work? The Project APl provides a property al | pr oj ects
which returns a list with the current project and all its subprojects underneath it. If you call al | proj ects
with a closure, the statements of the closure are delegated to the projects associated with al | pr oj ect s. You
could also do aniteration viaal | pr oj ect s. each, but that would be more verbose.

Other build systems use inheritance as the primary means for defining common behavior. We also offer
inheritance for projects as you will see later. But Gradle uses configuration injection as the usual way of
defining common behavior. We think it provides a very powerful and flexible way of configuring multiproject
builds.

Another possibilty for sharing configuration is to use a common external script. See Section 14.3, “Configuring
the project using an external build script” for more information.

57.2. Subproject configuration

The Project API also provides a property for accessing the subprojects only.

57.2.1. Defining common behavior

Example 57.5. Defining common behavior of all projects and subprojects

buil d. gradl e

al | projects {
task hello << {task -> println "I'm $task. proj ect. nane" }

}
subproj ects {
hello << {println “- | depend on water"}

}

Output of gradl e -qg hello

> gradle -q hello
I'"'mwat er

1" m bl uewhal e

- | depend on water
I"mkrill

- | depend on water

Page 349 of 448

Y ou may notice that there are two code snippets referencing the “hel | 0” task. Thefirst one, which usesthe “t ask
" keyword, constructs the task and provides it's base configuration. The second piece doesn't use the “t ask”
keyword, as it is further configuring the existing “hel | 0” task. You may only construct a task once in a
project, but you may any number of code blocks providing additional configuration.

57.2.2. Adding specific behavior

Y ou can add specific behavior on top of the common behavior. Usually we put the project specific behavior in
the build script of the project where we want to apply this specific behavior. But as we have already seen, we
don't have to do it thisway. We could add project specific behavior for the bl uewhal e project like this:
Example 57.6. Defining specific behaviour for particular project

buil d. gradl e

al | projects {
task hello << {task -> println "I'm $task. proj ect. nane" }

}
subproj ects {
hello << {println "- | depend on water"}

}

proj ect (':bluewhale').hello << {
println "- I'"'mthe |argest animal that has ever lived on this planet."

}

Output of gradl e -q hello

> gradle -q hello

I''mwat er

' m bl uewhal e

- | depend on water

- I"'mthe largest aninmal that has ever lived on this planet.
I*mkrill

| depend on water

As we have said, we usually prefer to put project specific behavior into the build script of this project. Let's
refactor and also add some project specific behavior tothe kri | | project.

Page 350 of 448

Example 57.7. Defining specific behaviour for project krill

Build layout

wat er/
buil d. gradl e
settings.gradle
bl uewhal e/

bui | d. gradl e
krill/
bui | d. gradl e

Note: The code for this example can be found at sanpl es/ user gui de/ mul t i proj ect/ spreadSpeci
inthe ‘-all’ distribution of Gradle.

settings.gradle

i ncl ude ' bluewhale', "krill"

bl uewhal e/ bui | d. gradl e

hel | 0. doLast {
println "- I'"'mthe |largest aninmal that has ever lived on this planet."

}

krill/build.gradle

hel | 0. doLast {
println "- The weight of nmy species in summer is twice as heavy as all human bei

}

buil d. gradl e

al | projects {

task hello << {task -> println "I'm $task. proj ect. nane" }
}
subproj ects {

hello << {println "- | depend on water"}

}

Output of gradl e -q hello

> gradle -q hello

I'''m wat er

"' m bl uewhal e

- | depend on water

- I"'mthe largest aninal that has ever lived on this planet.

I"mkrill

| depend on water

- The weight of ny species in sumer is twice as heavy as all human bei ngs.

57.2.3. Project filtering

To show more of the power of configuration injection, let's add another project called t r opi cal Fi sh and add
more behavior to the build via the build script of the wat er project.

Page 351 of 448

57.2.3.1. Filtering by name

Example 57.8. Adding custom behaviour to some projects (filtered by project name)

Build layout

wat er/
buil d. gradl e
settings.gradle
bl uewhal e/

bui | d. gradl e
krill/

bui | d. gradl e
tropi cal Fi sh/

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/ addTr opi cal
inthe‘-all’ distribution of Gradle.

settings.gradle

i nclude 'bluewhale', "krill', '"tropical Fish

bui I d. gradl e

al | projects {
task hello << {task -> println "I'm $task. proj ect. nane" }
}
subproj ects {
hello << {println "- | depend on water"}
}
configure(subprojects.findAll {it.name != "tropical Fish'}) {
hello << {println '- | love to spend tinme in the arctic waters."}

}

Output of gradl e -q hell o

> gradle -q hello

I'"'mwat er

1" m bl uewhal e

- | depend on water

- | love to spend time in the arctic waters.

- I"'mthe largest animal that has ever lived on this planet.
I"mkrill

| depend on water

I love to spend time in the arctic waters.

- The weight of ny species in sumer is twice as heavy as all human bei ngs.
I"mtropical Fi sh

| depend on water

Theconf i gure() method takesalist as an argument and applies the configuration to the projectsin thislist.

57.2.3.2. Filtering by properties

Using the project name for filtering is one option. Using extra project properties is another. (See Section 13.4.2,
“Extra properties’ for more information on extra properties.)

Page 352 of 448

Example 57.9. Adding custom behaviour to some projects (filtered by project properties)

Build layout

wat er/
buil d. gradl e
settings.gradle
bl uewhal e/

bui | d. gradl e
krill/

bui | d. gradl e
tropi cal Fi sh/

bui | d. gradl e

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/tropical Wt
inthe‘-al’ distribution of Gradle.

settings.gradle

i ncl ude 'bluewhale', "krill', 'tropical Fish'

bl uewhal e/ bui | d. gradl e

ext.arctic = true
hel | 0. doLast {
println "- I'mthe |argest animal that has ever lived on this planet."

}

krill/build.gradle

ext.arctic = true
hel | 0. doLast {
println "- The weight of nmy species in sumer is twice as heavy as all hunman b{

}

tropi cal Fi sh/ buil d. gradl e

ext.arctic = fal se

bui I d. gradl e

al | projects {
task hello << {task -> println "I'm $task. proj ect. nane" }
}
subproj ects {
hell o {
doLast {println "- | depend on water"}

after Eval uate { Project project ->
if (project.arctic) { doLast ({
println '- | love to spend tine in the arctic waters.' }

Output of gradl e -qg hell o

Page 353 of 448

\%

gradle -q hello

''m wat er

''m bl uewhal e

| depend on water

I"'mthe | argest animal that has ever lived on this planet.
I love to spend tinme in the arctic waters.

"mkrill

| depend on water

The wei ght of nmy species in summer is twice as heavy as all human bei ngs.
I love to spend tinme in the arctic waters.

"mtropical Fi sh

| depend on water

In the build file of the wat er project weuse an af t er Eval uat e notification. This means that the closure we
are passing gets evaluated after the build scripts of the subproject are evaluated. Asthe property ar ct i c isset

in those build scripts, we haveto do it thisway. You will find more on thistopic in Section 57.6, “ Dependencies
- Which dependencies?’

57.3. Execution rules for multi-project builds

When we executed the hel | o task from the root project dir, things behaved in an intuitive way. All the hel | o
tasks of the different projects were executed. Let's switch to the bl uewhal e dir and see what happens if we
execute Gradle from there.

Example 57.10. Running build from subpr oject

Output of gradl e -q hello

> gradle -q hello

' m bl uewhal e

- | depend on water

- I"'mthe largest aninmal that has ever lived on this planet.
- 1 love to spend tine in the arctic waters.

The basic rule behind Gradl€'s behavior is simple. Gradle looks down the hierarchy, starting with the current
dir, for tasks with the name hel | 0 and executes them. One thing is very important to note. Gradle always
evaluates every project of the multi-project build and creates all existing task objects. Then, according to the
task name arguments and the current dir, Gradle filters the tasks which should be executed. Because of Gradle's
cross project configuration every project has to be evaluated before any task gets executed. We will have a
closer look at thisin the next section. Let's now have our last marine example. Let's add atask to bl uewhal e
andkrill.

Page 354 of 448

Example 57.11. Evaluation and execution of projects

bl uewhal e/ bui | d. gradl e

ext.arctic = true
hello << { println "- I'mthe |argest aninal that

task di stanceTol ceberg << {
println '20 nautical niles'

}

krill/build.gradle

ext.arctic = true
hello << {
println "- The weight of my species in sumer

}

task di stanceTol ceberg << {
println '5 nautical mles'

}

Output of gradl e -q di stanceTol ceberg
> gradl e -q distanceTol ceberg

20 nautical mles
5 nautical mles

Here's the output without the - g option:

Example 57.12. Evaluation and execution of projects
Output of gr adl e di st anceTol ceberg

> gradl e distanceTol ceberg

: bl uewhal e: di st anceTol ceberg
20 nautical mles
ckrill:distanceTol ceberg

5 nautical niles

BU LD SUCCESSFUL

Total tinme: 1 secs

has ever lived on this planet."

is twice as heavy as all human b{

The build is executed from the wat er project. Neither wat er nor t r opi cal Fi sh have atask with the name
di st anceTol ceber g. Gradle does not care. The simple rule mentioned aready above is: Execute all tasks
down the hierarchy which have this name. Only complain if thereis no such task!

57.4. Running tasks by their absolute path

As we have seen, you can run a multi-project build by entering any subproject dir and execute the build from
there. All matching task names of the project hierarchy starting with the current dir are executed. But Gradle
aso offers to execute tasks by their absolute path (see also Section 57.5, “Project and task paths’):

Page 355 of 448

Example 57.13. Running tasks by their absolute path
Outputof gradle -q :hello :krill:hello hello

> gradle -q :hello :krill:hello hello

I''' m wat er

I*mkrill

- | depend on water

- The weight of ny species in sumer is twice as heavy as all human bei ngs.
I love to spend tine in the arctic waters.

I"mtropical Fi sh

| depend on water

The build is executed from thet r opi cal Fi sh project. We execute the hel | o tasks of thewat er , thekri | |
and the t r opi cal Fi sh project. The first two tasks are specified by their absolute path, the last task is
executed using the name matching mechanism described above.

57.5. Project and task paths

A project path has the following pattern: It starts with an optional colon, which denotes the root project. The
root project is the only project in a path that is not specified by its name. The rest of a project path is a
colon-separated sequence of project names, where the next project is a subproject of the previous project.

The path of atask is simply its project path plus the task name, like “: bl uewhal e: hel | 0”. Within a project
you can address atask of the same project just by its name. Thisis interpreted as arelative path.

Originally Gradle used the' /' character as a natural path separator. With the introduction of directory tasks

(see Section 14.1, “Directory creation™) this was no longer possible, as the name of the directory task contains
the' /' character.

57.6. Dependencies - Which dependencies?

The examples from the last section were special, as the projects had no Execution Dependencies. They had only
Configuration Dependencies. The following sections illustrate the differences between these two types of
dependencies.

Page 356 of 448

57.6.1. Execution dependencies

57.6.1.1. Dependencies and execution order

Example 57.14. Dependencies and execution order

Build layout

nmessages/
settings. gradl e
consuner/

bui | d. gradl e
producer/
buil d. gradl e

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/ dependenci e
inthe*-all’ distribution of Gradle.

settings.gradle

i ncl ude 'consuner', 'producer'’

consuner/ buil d. gradl e

task action << {
printl n("Consun ng nmessage: ${root Project.producer Message}")

}

producer/bui |l d. gradl e

task action << {
println "Produci ng nessage:"

r oot Proj ect. producer Message = 'Watch the order of execution.

Output of gradl e -qg acti on

> gradle -qg action
Consum ng nessage: nul
Produci ng nessage:

This didn't quite do what we want. If nothing else is defined, Gradle executes the task in aphanumeric order.
Therefore, Gradle will execute “: consuner : acti on” before “: producer: acti on”. Let's try to solve
thiswith a hack and rename the producer project to “aPr oducer ”.

Page 357 of 448

Example 57.15. Dependencies and execution order

Build layout

messages/
settings. gradl e
aPr oducer/

bui | d. gradl e
consuner /
buil d. gradl e

settings.gradle

i ncl ude ' consuner', 'aProducer'

aProducer/buil d. gradl e

task action << {
println "Produci ng nessage:"
root Proj ect. producer Message = 'VWatch the order of execution.

consuner/ buil d. gradl e

task action << {

println("Consunm ng nmessage: ${root Project.producer Message}")

}

Output of gradl e -q acti on
> gradle -q action

Produci ng nessage:
Consumi ng nessage: Watch the order of execution

We can show where this hack doesn't work if we now switch to the consuner dir and execute the build.

Example 57.16. Dependencies and execution order
Output of gradl e -q acti on

> gradle -qg action
Consumi ng nessage: nul

The problem is that the two “act i on” tasks are unrelated. If you execute the build from the “nessages”
project Gradle executes them both because they have the same name and they are down the hierarchy. In the last
example only one “act i on” task was down the hierarchy and therefore it was the only task that was executed.
We need something better than this hack.

Page 358 of 448

57.6.1.2. Declaring dependencies

Example 57.17. Declaring dependencies

Build layout

nmessages/
settings.gradle
consuner/

bui | d. gradl e
producer/
bui | d. gradl e

Note: The code for this example can be found at sanpl es/ user gui de/ mul t i proj ect/ dependenci €
inthe ‘-all’ distribution of Gradle.

settings.gradle

i ncl ude 'consuner', ' producer’

consuner/ buil d. gradl e

task action(dependsOn: ":producer:action”) << {
println("Consum ng nessage: ${rootProject.producer Message}")

}

producer/buil d. gradl e

task action << {
println "Produci ng nessage:"

r oot Proj ect. producer Message = 'Watch the order of execution.'

Output of gradl e -q action

> gradle -q action
Produci ng nessage:
Consumi ng nessage: Watch the order of execution.

Running thisfrom the consumer directory gives.

Example 57.18. Declaring dependencies
Output of gradl e -q action

> gradle -q action
Produci ng nessage:
Consunmi ng nessage: Watch the order of execution.

This is now working better because we have declared that the “act i on” task in the “consuner ” project has
an execution dependency onthe“act i on” task inthe “pr oducer ” project.

Page 359 of 448

57.6.1.3. The nature of cross project task dependencies

Of course, task dependencies across different projects are not limited to tasks with the same name. Let's change
the naming of our tasks and execute the build.

Example 57.19. Cross project task dependencies

consuner/build. gradl e

task consune(dependsOn: ': producer: produce') << {

println("Consum ng nessage: ${rootProject.producer Message}")

}

producer/ bui |l d. gradl e

task produce << {
println "Produci ng nmessage: "

r oot Proj ect. producer Message = 'Watch the order of execution.'

Output of gradl e -gq consune
> gradl e -q consune

Produci ng nessage:
Consum ng nessage: Watch the order of execution.

57.6.2. Configuration time dependencies

Let's see one more example with our producer-consumer build before we enter Java land. We add a property to
the“pr oducer ” project and create a configuration time dependency from “consuner ” to “pr oducer .
Example 57.20. Configuration time dependencies

consuner/buil d. gradl e

def message = root Proj ect. producer Message

task consunme << {

println("Consunm ng nessage: " + message)

}

producer/bui |l d. gradl e

root Proj ect. producer Message = 'Watch the order of evaluation.'

Output of gr adl e -g consune

> gradle -qg consume
Consum ng nessage: null

The default evaluation order of projectsis alphanumeric (for the same nesting level). Therefore the“consuner
" project is evaluated before the “pr oducer ” project and the “pr oducer Message” value is set after itis
read by the “consuner ” project. Gradle offers asolution for this.

Page 360 of 448

Example 57.21. Configuration time dependencies - evaluationDependsOn

consuner/build. gradl e

eval uati onDependsOn(' : pr oducer ')

def message = root Proj ect. producer Message

task consunme << {
println("Consunm ng nessage: " + message)

}

Output of gr adl e -g consune

> gradle -q consune
Consum ng nessage: Watch the order of eval uation.

The use of the “eval uati onDependsOn” command results in the evaluation of the “pr oducer” project
before the “consuner ” project is evaluated. This example is a bit contrived to show the mechanism. In this
case there would be an easier solution by reading the key property at execution time.

Example 57.22. Configuration time dependencies
consuner/ buil d. gradl e

task consunme << {
printl n("Consuni ng nmessage: ${root Project.producer Message}")

}

Output of gradl e -g consune

> gradl e -q consune
Consumi ng nessage: Watch the order of eval uation.

Configuration dependencies are very different from execution dependencies. Configuration dependencies are
between projects whereas execution dependencies are always resolved to task dependencies. Also note that all
projects are always configured, even when you start the build from a subproject. The default configuration order
istop down, which is usually what is needed.

To change the default configuration order to “bottom up”, use the “eval uat i onDependsOnChi | dren()”
method instead.

On the same nesting level the configuration order depends on the alphanumeric position. The most common use
case is to have multi-project builds that share a common lifecycle (e.g. al projects use the Java plugin). If you
declare with dependsOn a execution dependency between different projects, the default behavior of this
method is to also create a configuration dependency between the two projects. Therefore it is likely that you
don't have to define configuration dependencies explicitly.

57.6.3. Redl life examples

Gradle's multi-project features are driven by real life use cases. One good example consists of two web
application projects and a parent project that creates a distribution including the two web applications. [23 For
the example we use only one build script and do cross project configuration.

Page 361 of 448

Example 57.23. Dependencies - real life example - crossproject configuration

Build layout

webDi st/
settings. gradl e
bui | d. gradl e
dat e/
src/ mai n/ j aval/

or g/ gradl e/ sanpl e/
Dat eServl et . j ava
hel | o/
src/ mai n/ j aval/
or g/ gradl e/ sanpl e/
Hel | oServl et . java

Note: The code for this example can be found at sanpl es/ user gui de/ mul t i proj ect/ dependenci €
inthe ‘-all’ distribution of Gradle.

settings.gradle

include 'date', 'hello'

buil d. gradl e

al | projects {
apply plugin: 'java
group = 'org.gradle.sanple
version = '1. 0

}

subproj ects {
apply plugin: '"war'
repositories {
mavenCentral ()
}
dependenci es {
conpi l e "javax. servl et:servl et-api:2.5"

}

}

task expl odedDi st (dependsOn: assenble) << {
Fil e expl odedDi st = nkdir (" $buil dDi r/expl odedDi st")
subproj ects. each {project ->
proj ect.tasks. w thType(Jar).each {archi veTask ->
copy {
from ar chi veTask. ar chi vePat h
i nto expl odedDi st

We have an interesting set of dependencies. Obviously the dat e and hel | o projects have a configuration
dependency on webDi st , asall the build logic for the webapp projectsisinjected by webDi st . The execution
dependency isin the other direction, aswebDi st depends on the build artifacts of dat e and hel | o. Thereis
even athird dependency. webDi st has a configuration dependency on dat e and hel | o because it needs to

Page 362 of 448

know the ar chi vePat h. But it asks for this information at execution time. Therefore we have no circular
dependency.

Such dependency patterns are daily bread in the problem space of multi-project builds. If a build system does
not support these patterns, you either can't solve your problem or you need to do ugly hacks which are hard to
maintain and massively impair your productivity as a build master.

57.7. Project lib dependencies

What if one project needs the jar produced by another project in its compile path, and not just the jar but also the
transitive dependencies of this jar? Obviously thisis a very common use case for Java multi-project builds. As
aready mentioned in Section 51.4.3, “Project dependencies’, Gradle offers project lib dependencies for this.

Example 57.24. Project lib dependencies
Build layout

j aval
settings.gradle
buil d. gradl e
api /
src/ mai n/ j aval
or g/ gradl e/ sanpl e/
api /
Person. j ava
api | npl /
Per sonl npl . j ava
servi ces/ personServi ce/
src/
mai n/ j ava/
or g/ gradl e/ sanpl e/ servi ces/
Per sonServi ce. j ava
test/javal/
or g/ gr adl e/ sanpl e/ servi ces/
Per sonServi ceTest . j ava
shar ed/
src/ mai n/ j aval
or g/ gr adl e/ sanpl e/ shar ed/
Hel per.j ava

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/ dependenci e
inthe*-al’ distribution of Gradle.

We have the projects “shar ed”, “api " and “per sonSer vi ce”. The“per sonSer vi ce” project hasalib
dependency on the other two projects. The “api ” project hasalib dependency on the“shar ed” project. (22]

Page 363 of 448

Example 57.25. Project lib dependencies

settings.gradle

include 'api', 'shared', 'services:personService

buil d. gradl e

subprojects {
apply plugin: 'java
group = 'org.gradle.sanple
version = '1. 0
repositories {
mavenCentral ()
}
dependenci es {
testConpile “junit:junit:4. 11"
}
}

project(':api') {
dependenci es {
conpil e project(':shared")
}
}

proj ect (' :services: personService') {
dependenci es {
conpi l e project(':shared"), project(':api")

}

All the build logic isin the “bui | d. gr adl e” file of the root project. [23] A “lib” dependency is a special
form of an execution dependency. It causes the other project to be built first and adds the jar with the classes of
the other project to the classpath. It also adds the dependencies of the other project to the classpath. So you can
enter the “api ” directory and trigger a“gr adl e conpi | e”. First the “shar ed” project is built and then the
“api " project is built. Project dependencies enable partial multi-project builds.

If you come from Maven land you might be perfectly happy with this. If you come from lvy land, you might
expect some more fine grained control. Gradle offers this to you:

Page 364 of 448

Example 57.26. Fine grained control over dependencies
buil d. gradl e

subproj ects {
apply plugin: 'java
group = 'org.gradl e.sanpl e
version = '1. 0

}

project(':api') {
configurations {
spi
}
dependenci es {
conpi l e project(':shared")
}
task spiJdar(type: Jar) {
baseNane = ' api - spi
dependsOn cl asses
from sour ceSet s. mai n. out put
i ncl ude(' org/ gradl e/ sanpl e/ api /**")
}
artifacts {
spi spiJar
}
}

proj ect (' :services: personService') {
dependenci es {
conpi l e project(':shared")
conpi l e project(path: ':api', configuration
testConpile "junit:junit:4. 11", project(':api

The Java plugin adds per default ajar to your project libraries which contains all the classes. In this example we
create an additional library containing only the interfaces of the “api " project. We assign this library to a new
dependency configuration. For the person service we declare that the project should be compiled only against

the “api " interfaces but tested with all classes from “api ”.

57.7.1. Disabling the build of dependency projects

Sometimes you don't want depended on projects to be built when doing a partial build. To disable the build of

the depended on projects you can run Gradle with the - a option.

57.8. Parallel project execution

With more and more CPU cores available on developer desktops and Cl servers, it isimportant that Gradle is
ableto fully utilise these processing resources. More specifically, the parallel execution attempts to:

® Reduce total build time for a multi-project build where execution is 1O bound or otherwise does not

consume all available CPU resources.

® Provide faster feedback for execution of small projects without awaiting completion of other projects.

Page 365 of 448

Although Gradle aready offers parallel test execution via Test . set MaxPar al | el For ks() the feature
described in this section is parallel execution at a project level. Parallel execution is an incubating feature.
Please useit and let us know how it works for you.

Parallel project execution allows the separate projects in a decoupled multi-project build to be executed in
parallel (see also: Section 57.9, “Decoupled Projects’). While parallel execution does not strictly require
decoupling at configuration time, the long-term goal is to provide a powerful set of features that will be
available for fully decoupled projects. Such features include:

® Section 57.1.1.1, “Configuration on demand”.

® Configuration of projectsin parallel.

® Re-use of configuration for unchanged projects.

* Project-level up-to-date checks.

® Using pre-built artifacts in the place of building dependent projects.

How does parallel execution work? First, you need to tell Gradle to use the parallel mode. Y ou can use the
command line argument (Appendix D, Gradle Command Line) or configure your build environment (
Section 20.1, “Configuring the build environment via gradle.properties’). Unless you provide a specific number
of paralel threads Gradle attempts to choose the right number based on available CPU cores. Every parallel
worker exclusively owns a given project while executing a task. This means that 2 tasks from the same project
are never executed in parallel. Therefore only multi-project builds can take advantage of parallel execution.
Task dependencies are fully supported and parallel workers will start executing upstream tasks first. Bear in
mind that the alphabetical scheduling of decoupled tasks, known from the sequential execution, does not really
work in parallel mode. You need to make sure the task dependencies are declared correctly to avoid ordering
issues.

57.9. Decoupled Projects

Gradle allows any project to access any other project during both the configuration and execution phases. While
this provides a great deal of power and flexibility to the build author, it also limits the flexibility that Gradle has
when building those projects. For instance, this effectively prevents Gradle from correctly building multiple
projects in paralel, configuring only a subset of projects, or from substituting a pre-built artifact in place of a
project dependency.

Two projects are said to be decoupled if they do not directly access each other's project model. Decoupled
projects may only interact in terms of declared dependencies. project dependencies (Section 51.4.3, “Project
dependencies’) and/or task dependencies (Section 6.5, “Task dependencies’). Any other form of project
interaction (i.e. by modifying another project object or by reading a value from another project object) causes
the projects to be coupled. The consequence of coupling during the configuration phase is that if gradle is
invoked with the ‘configuration on demand' option, the result of the build can be flawed in several ways. The
consequence of coupling during execution phase is that if gradle isinvoked with the parallel option, one project
task runs too late to influence a task of a project building in parallel. Gradle does not attempt to detect coupling
and warn the user, as there are too many possibilities to introduce coupling.

A very common way for projects to be coupled is by using configuration injection (Section 57.1, “ Cross project
configuration”). It may not be immediately apparent, but using key Gradle featureslikethe al | pr oj ect s and
subpr oj ect s keywords automatically cause your projects to be coupled. This is because these keywords are
used in abui | d. gr adl e file, which defines a project. Often thisis a“root project” that does nothing more

Page 366 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/tasks/testing/Test.html#setMaxParallelForks(int)

than define common configuration, but as far as Gradle is concerned this root project is still a fully-fledged
project, and by using al | pr oj ect s that project is effectively coupled to all other projects. Coupling of the
root project to subprojects does not impact ‘configuration on demand', but usingthe al | pr oj ect s and subpr 0j ¢
in any subproject'sbui | d. gr adl e filewill have an impact.

This means that using any form of shared build script logic or configuration injection (al | pr oj ect s, subpr oj e
, etc.) will cause your projects to be coupled. As we extend the concept of project decoupling and provide
features that take advantage of decoupled projects, we will also introduce new features to help you to solve
common use cases (like configuration injection) without causing your projects to be coupled.

In order to make good use of cross project configuration without running into issues for parallel and
‘configuration on demand' options, follow these recommendations:

* Avoid asubproject'sbui | d. gr adl e referencing other subprojects; prefering cross configuration from the
root project.
® Avoid changing the configuration of other projects at execution time.

57.10. Multi-Project Building and Testing

The bui | d task of the Java plugin is typically used to compile, test, and perform code style checks (if the
CodeQuality plugin is used) of a single project. In multi-project builds you may often want to do all of these
tasks across arange of projects. The bui | dNeeded and bui | dDependent s tasks can help with this.

Look at Example 57.25, “Project lib dependencies’. In this example, the “: ser vi ces: per sonservi ce”
project depends on both the “: api ” and “: shar ed” projects. The“: api ” project also dependson the“: shar ed
" project.

Assume you are working on a single project, the “: api ” project. Y ou have been making changes, but have not
built the entire project since performing a clean. You want to build any necessary supporting jars, but only
perform code quality and unit tests on the project you have changed. The bui | d task doesthis.

Page 367 of 448

Example 57.27. Build and Test Single Proj ect

Output of gradl e : api : build

> gradle :api:build

: shared: conpi | eJava

: shar ed: processResour ces
:shared: cl asses
:shared:jar

> api:conpil eJava

:api : processResour ces
capi:cl asses

sapi:jar

1 api:assenbl e
;api:conpil eTest Java
:api: processTest Resources
sapi:testd asses

rapi:test
:api : check
sapi:build

BU LD SUCCESSFUL

Total tine: 1 secs

While you are working in a typical development cycle repeatedly building and testing changes to the *: api ”

project (knowing that you are only changing files in this one project), you may not want to even suffer the
expense of building “: shar ed: conpi | e” to see what has changed inthe“: shar ed” project. Adding the”- a
" option will cause Gradle to use cached jars to resolve any project lib dependencies and not try to re-build the

depended on projects.

Example 57.28. Partial Build and Test Single Proj ect

Output of gradl e -a :api:build

> gradle -a :api:build
;api:conpil eJava

s api: processResources
1api:cl asses

rapi:jar

;api:assenbl e
;api:conpil eTest Java

:api : processTest Resour ces
rapi:testd asses

;api:test
:api: check
sapi:build

BU LD SUCCESSFUL

Total tinme: 1 secs

If you have just gotten the latest version of source from your version control system which included changesin
other projectsthat “: api " depends on, you might want to not only build all the projects you depend on, but test
them as well. The bui | dNeeded task also tests all the projects from the project lib dependencies of the

testRuntime configuration.

Page 368 of 448

Example 57.29. Build and Test Depended On Projects
Output of gr adl e : api : bui | dNeeded

> gradl e :api:buil dNeeded
: shared: conpi | eJava

: shar ed: processResour ces
:shared: cl asses
:shared:jar

> api:conpil eJava

:api : processResour ces
capi:cl asses

sapi:jar

1 api:assenbl e
;api:conpil eTest Java
:api: processTest Resources
sapi:testd asses

rapi:test
:api : check
sapi:build

:shared: assenbl e

: shar ed: conpi | eTest Java

: shar ed: processTest Resour ces
:shared: test Cl asses

:shared: test

:shar ed: check

:shared: build

: shar ed: bui | dNeeded

:api : bui | dNeeded

BU LD SUCCESSFUL

Total tinme: 1 secs

You also might want to refactor some part of the “: api ” project that is used in other projects. If you make
these types of changes, it is not sufficient to test just the “: api ” project, you also need to test all projects that

depend on the “: api ” project. The bui | dDependent s task also tests al the projects that have a project lib

dependency (in the testRuntime configuration) on the specified project.

Page 369 of 448

Example 57.30. Build and Test Dependent Projects
Output of gr adl e : api : bui | dDependent s

> gradl e :api: buil dDependents
: shared: conpi | eJava

: shar ed: processResour ces
:shared: cl asses
:shared:jar

> api:conpil eJava

:api : processResour ces
capi:cl asses

sapi:jar

1 api:assenbl e
;api:conpil eTest Java
;api: processTest Resour ces
sapi:testd asses

rapi:test
:api : check
sapi:build

:services: personServi ce: conpi | eJava
:services: personServi ce: processResour ces
:services: personServi ce: cl asses
:services: personService:jar

:services: personServi ce: assenbl e

1 services: personServi ce: conpi |l eTest Java
:services: personServi ce: processTest Resour ces
:services: personService: testC asses
:services: personService: test

:services: personServi ce: check

:services: personService: build

:servi ces: personServi ce: bui | dDependent s
:api : bui | dDependent s

BU LD SUCCESSFUL

Total tinme: 1 secs

Finally, you may want to build and test everything in all projects. Any task you run in the root project folder
will cause that same named task to be run on all the children. So you can just run “gr adl e bui | d” to build

and test all projects.

57.11. Multi Project and buildSrc

Section 60.3, “Build sources in the bui | dSr ¢ project” tells us that we can place build logic to be compiled
and tested in the special bui | dSr ¢ directory. In a multi project build, there can only be one bui | dSrc

directory which must be located in the root directory.

57.12. Property and method inheritance

Properties and methods declared in a project are inherited to all its subprojects. This is an alternative to
configuration injection. But we think that the model of inheritance does not reflect the problem space of
multi-project builds very well. In afuture edition of this user guide we might write more about this.

Page 370 of 448

Method inheritance might be interesting to use as Gradle's Configuration Injection does not support methods
yet (but will in afuture release).

Y ou might be wondering why we have implemented a feature we obviously don't like that much. One reason is
that it is offered by other tools and we want to have the check mark in a feature comparison :). And we like to
offer our users achoice.

5/7.13. Summary

Writing this chapter was pretty exhausting and reading it might have a similar effect. Our final message for this
chapter is that multi-project builds with Gradle are usually not difficult. There are five elements you need to
remember: al | proj ect s, subpr oj ect s, eval uati onDependsOn, eval uati onDependsOnChi | drer
and project lib dependencies. (241 with those elements, and keeping in mind that Gradle has a distinct
configuration and execution phase, you already have a lot of flexibility. But when you enter steep territory
Gradle does not become an obstacle and usually accompanies and carries you to the top of the mountain.

[21] The rea use case we had, was using http://lucene.apache.org/solr, where you need a separate war for each
index you are accessing. That was one reason why we have created a distribution of webapps. The Resin servlet
container allows us, to let such adistribution point to a base installation of the servlet container.

[22] “servi ces” is also a project, but we use it just as a container. It has no build script and gets nothing
injected by another build script.

[23] We do this here, as it makes the layout a bit easier. We usually put the project specific stuff into the build
script of the respective projects.

[24] So we are well in the range of the 7 plus 2 Rule ;)

Page 371 of 448

http://lucene.apache.org/solr
http://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two

58

Writing Custom Task Classes

Gradle supports two types of task. One such type is the simple task, where you define the task with an action
closure. We have seen these in Chapter 6, Build Script Basics. For this type of task, the action closure
determines the behaviour of the task. This type of task is good for implementing one-off tasks in your build
script.

The other type of task is the enhanced task, where the behaviour is built into the task, and the task provides
some properties which you can use to configure the behaviour. We have seen these in Chapter 15, More about
Tasks. Most Gradle plugins use enhanced tasks. With enhanced tasks, you don't need to implement the task
behaviour as you do with simple tasks. Y ou simply declare the task and configure the task using its properties.
In this way, enhanced tasks let you reuse a piece of behaviour in many different places, possibly across different
builds.

The behaviour and properties of an enhanced task is defined by the task’s class. When you declare an enhanced
task, you specify the type, or class of the task.

Implementing your own custom task class in Gradle is easy. Y ou can implement a custom task class in pretty
much any language you like, provided it ends up compiled to bytecode. In our examples, we are going to use
Groovy as the implementation language, but you could use, for example, Java or Scala. In general, using
Groovy isthe easiest option, because the Gradle API is designed to work well with Groovy.

58.1. Packaging atask class

There are several places where you can put the source for the task class.

Build script
You can include the task class directly in the build script. This has the benefit that the task class is
automatically compiled and included in the classpath of the build script without you having to do anything.
However, the task class is not visible outside the build script, and so you cannot reuse the task class outside
the build script it is defined in.

bui | dSr c project
You can put the source for the task class in the r oot Proj ect Di r / bui | dSr ¢/ src/ mai n/ gr oovy
directory. Gradle will take care of compiling and testing the task class and making it available on the
classpath of the build script. The task class is visible to every build script used by the build. However, it is
not visible outside the build, and so you cannot reuse the task class outside the build it is defined in. Using
the bui | dSr ¢ project approach separates the task declaration - that is, what the task should do - from the
task implementation - that is, how the task doesiit.

Page 372 of 448

See Chapter 60, Organizing Build Logic for more details about the bui | dSr ¢ project.

Standalone proj ect
Y ou can create a separate project for your task class. This project produces and publishes a JAR which you
can then use in multiple builds and share with others. Generally, this JAR might include some custom
plugins, or bundle several related task classesinto asingle library. Or some combination of the two.

In our examples, we will start with the task class in the build script, to keep things simple. Then we will look at
creating a standal one project.

58.2. Writing asimple task class

To implement a custom task class, you extend Def aul t Task.

Example 58.1. Defining a custom task

buil d. gradl e

cl ass GreetingTask extends Default Task {

}

This task doesn't do anything useful, so let's add some behaviour. To do so, we add a method to the task and
mark it with the TaskAct i on annotation. Gradle will call the method when the task executes. Y ou don't have
to use a method to define the behaviour for the task. Y ou could, for instance, call doFi r st () or doLast ()

with a closure in the task constructor to add behaviour.

Example 58.2. A hello world task
buil d. gradl e
task hello(type: G eetingTask)

cl ass G eetingTask extends Defaul t Task {
@askActi on
def greet() {
println "hello from G eetingTask'

}

Output of gradl e -qg hello

> gradle -q hello
hell o from G eeti ngTask

Let's add a property to the task, so we can customize it. Tasks are simply POGOs, and when you declare a task,
you can set the properties or call methods on the task object. Here we add a gr eet i ng property, and set the
value when we declare the gr eet i ng task.

Page 373 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.DefaultTask.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/tasks/TaskAction.html

Example 58.3. A customizable hello world task
buil d. gradl e

/1 Use the default greeting
task hello(type: G eetingTask)

/1 Customni ze the greeting
task greeting(type: GeetingTask) {
greeting = 'greetings from G eetingTask'

}

cl ass GreetingTask extends Defaul t Task {
String greeting = 'hello from G eeti ngTask'

@askActi on
def greet() {
println greeting

}

Output of gradl e -q hell o greeting
> gradle -q hello greeting

hell o from GreetingTask
greetings from G eeti ngTask

58.3. A standalone project

Now we will move our task to a standalone project, so we can publish it and share it with others. This project is
simply a Groovy project that produces a JAR containing the task class. Here is a simple build script for the
project. It applies the Groovy plugin, and adds the Gradle API as a compile-time dependency.

Example 58.4. A build for a custom task

buil d. gradl e
apply plugin: 'groovy’

dependenci es {

conpi | e gradl eApi ()
conpi |l e | ocal G oovy()

Note: The code for this example can be found at sanpl es/ cust onPl ugi n/ pl ugi n in the ‘-al’
distribution of Gradle.

Wejust follow the convention for where the source for the task class should go.

Page 374 of 448

Example 58.5. A custom task

src/ mai n/ groovy/ or g/ gradl e/ G eeti ngTask. gr oovy

package org.gradle

i mport org.gradl e. api . Def aul t Task
i mport org.gradle. api.tasks. TaskActi on

cl ass GreetingTask extends Default Task {
String greeting = 'hello from G eetingTask'

@askActi on
def greet() {
println greeting

}

58.3.1. Using your task class in another project

To use atask classin abuild script, you need to add the class to the build script's classpath. To do this, you use a
bui l dscript { } block, as described in Section 60.5, “Externa dependencies for the build script”. The
following example shows how you might do this when the JAR containing the task class has been published to a
local repository:

Example 58.6. Using a custom task in another project
bui I d. gradl e

bui I dscript {
repositories {
maven {
url uri('../repo")
}
}
dependenci es {
cl asspath group: 'org.gradle', nane: 'custonPlugin',
version: '1.0- SNAPSHOT'

}

task greeting(type: org.gradle. GeetingTask) {
greeting = ' howdy!"’

}

58.3.2. Writing tests for your task class

You can usethe Pr oj ect Bui | der classto create Pr oj ect instances to use when you test your task class.

Page 375 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/testfixtures/ProjectBuilder.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html

Example 58.7. Testing a custom task

src/test/groovy/org/ gradl e/ GeetingTaskTest. gr oovy

cl ass GreetingTaskTest {
@est
public void canAddTaskToProject () {
Proj ect project = ProjectBuilder.builder().build()

def task = project.task('greeting' , type: G eetingTask)
assert True(task instanceof G eetingTask)

58.4. Incremental tasks

Incremental tasks are an incubating feature.

Since the introduction of the implementation described above (early in the Gradle 1.6 release cycle),
discussions within the Gradle community have produced superior ideas for exposing the information
about changes to task implementors to what is described below. As such, the API for this feature will
almost certainly change in upcoming releases. However, please do experiment with the current
implementation and share your experiences with the Gradle community.

The feature incubation process, which is part of the Gradle feature lifecycle (see Appendix C, The
Feature Lifecycle), exists for this purpose of ensuring high quality final implementations through
incorporation of early user feedback.

With Gradle, it's very simple to implement atask that gets skipped when all of it's inputs and outputs are up to
date (see Section 15.9, “ Skipping tasks that are up-to-date”). However, there are times when only a few input
files have changed since the last execution, and you'd like to avoid reprocessing all of the unchanged inputs.
This can be particularly useful for atransformer task, that converts input filesto output fileson a 1:1 basis.

If you'd like to optimise your build so that only out-of-date inputs are processed, you can do so with an
incremental task.

58.4.1. Implementing an incremental task

For a task to process inputs incrementally, that task must contain an incremental task action. This is a task
action method that contains a single | ncr enment al Taskl nput s parameter, which indicates to Gradle that

the action will process the changed inputs only.

The incremental task action may supply an | ncrenent al Taskl nput s. out Of Dat e() action for
processing any input file that is out-of-date, and a | ncr ement al Taskl nput s. renoved() action that
executes for any input file that has been removed since the previous execution.

Page 376 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)

Example 58.8. Defining an incremental task action
buil d. gradl e

cl ass I ncrenent al Rever seTask extends Defaul t Task {
@nputDirectory
def File inputDr

@out put Di rectory
def File outputDr

@ nput
def inputProperty

@askActi on
voi d execut e(l ncrenent al Taskl nputs inputs) {
println inputs.increnental ? "CHANGED inputs considered out

"ALL inputs considered out

i nputs. out O Date { change ->

println "out of date: ${change.file.nanme}"
def targetFile = new File(outputDir, change.file.nange)
targetFile.text = change.file.text.reverse()

}

i nputs.renoved { change ->
println "renoved: ${change.file.nane}"

def targetFile = new File(outputDir, change.file.nane)

targetFil e. del ete()

of date"
of date"

Note: The code for this example can be found at sanpl es/ user gui de/ t asks/ i ncrenent al Task

inthe ‘-all’ distribution of Gradle.

For a simple transformer task like this, the task action simply needs to generate output files for any out-of-date

inputs, and delete output files for any removed inputs.

A task may only contain a single incremental task action.

58.4.2. Which inputs are considered out of date?

When Gradle has history of a previous task execution, and the only changes to the task execution context since
that execution are to input files, then Gradle is able to determine which input files need to be reprocessed by the
task. In thiscase, thel ncr enent al Taskl nput s. out Of Dat e() action will be executed for any input file
that was added or modified, and the | ncr enent al Taskl nput s. renoved() action will be executed for

any removed input file.

However, there are many cases where Gradle is unable to determine which input files need to be reprocessed.

Examplesinclude:

® Thereisno history available from a previous execution.

® You are building with a different version of Gradle. Currently, Gradle does not use task history from a

different version.

Page 377 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)

* AnupToDat eWhen criteria added to the task returnsf al se.
* Aninput property has changed since the previous execution.
® One or more output files have changed since the previous execution.

In any of these cases, Gradle will consider al of the input files to be out Of Dat e. The
I ncrement al Taskl nput s. out Of Dat e() action will be executed for every input file, and the
I ncr enent al Taskl nput s. renoved() action will not be executed at all.

You can check if Gradle was able to determine the incremental changes to input files with
I ncrenent al Taskl nputs.islncremental ().

58.4.3. An incremental task in action

Given the incremental task implementation above, we can explore the various change scenarios by example.
Note that the various mutation tasks (‘updatelnputs, 'removelnput’, etc) are only present for demonstration
purposes. these would not normally be part of your build script.

First, consider the | ncr ement al Rever seTask executed against a set of inputs for the first time. In this
case, all inputs will be considered “out of date”:

Example 58.9. Running the incremental task for thefirst time

buil d. gradl e

task increnental Reverse(type: |ncrenental ReverseTask) {
inputDir = file('inputs')
outputDir = file("$buil dDir/outputs")

i nput Property = project.properties['tasklnputProperty'] ?: "original"

Build layout

i ncrenent al Task/
bui | d. gradl e
i nput s/

1. txt
2.t xt
3.t xt

Output of gr adl e -q i ncrenent al Rever se

> gradl e -q increnental Reverse
ALL inputs considered out of date
out of date: 1.txt

out of date: 2.txt

out of date: 3.txt

Naturally when the task is executed again with no changes, then the entire task is up to date and no files are
reported to the task action:

Page 378 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:incremental
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:incremental

Example 58.10. Running theincremental task with unchanged inputs
Output of gradl e -q i ncrenent al Rever se

> gradl e -q increnental Reverse

When an input file is modified in some way or a new input file is added, then re-executing the task results in
those files being reported to | ncr ement al Taskl nput s. out Of Dat e() :

Example 58.11. Running the incremental task with updated input files

bui I d. gradl e

task updatel nputs() << {
file('inputs/1.txt").text "Changed content for existing file 1."

file('"inputs/4.txt').text "Content for new file 4."

Output of gradl e -q updat el nputs i ncrenent al Reverse

> gradl e -q updat el nputs increnental Reverse
CHANGED i nputs considered out of date

out of date: 1.txt

out of date: 4.txt

When an existing input file is removed, then re-executing the task results in that file being reported to
I ncrenent al Taskl nput s. renmoved() :

Example 58.12. Running the incremental task with an input file removed

buil d. gradl e

task renovel nput () << {
file("inputs/3.txt").delete()

}

Output of gradl e -q renovel nput increnmental Reverse

> gradl e -q renovel nput incremental Reverse
CHANGED i nputs consi dered out of date
renoved: 3.txt

When an output file is deleted (or modified), then Gradle is unable to determine which input files are out of
date. In this case, all input files are reported to the | ncr ermrent al Taskl nput s. out Of Dat e() action, and

no input files are reported to the | ncr enent al Taskl nput s. renoved() action:

Page 379 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)

Example 58.13. Running theincremental task with an output file removed

bui I d. gradl e

task renoveQutput() << {
file("$buildDir/outputs/1.txt").delete()

}

Output of gr adl e -qg renoveQut put increnental Reverse

> gradl e -q renoveCut put increnental Reverse
ALL inputs considered out of date

out of date: 1.txt

out of date: 2.txt

out of date: 3.txt

When a task input property is modified, Gradle is unable to determine how this property impacted the task
outputs, so all input files are assumed to be out of date. So similar to the changed output file example, all input
files are reported to the | ncr emrent al Taskl nput s. out O Dat e() action, and no input files are reported

tothel ncr ement al Taskl nput s. renpved() action:

Example 58.14. Running the incremental task with an input property changed
Output of gr adl e -q - Pt askl nput Property=changed i ncrenent al Rever se

> gradl e -qg -Ptaskl nput Property=changed i ncrenent al Rever se
ALL inputs considered out of date

out of date: 1.txt

out of date: 2.txt

out of date: 3.txt

Page 380 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)

59

Writing Custom Plugins

A Gradle plugin packages up reusable pieces of build logic, which can be used across many different projects
and builds. Gradle alows you to implement your own custom plugins, so you can reuse your build logic, and
shareit with others.

Y ou can implement a custom plugin in any language you like, provided the implementation ends up compiled as
bytecode. For the examples here, we are going to use Groovy as the implementation language. Y ou could use
Javaor Scalainstead, if you want.

59.1. Packaging a plugin
There are several places where you can put the source for the plugin.

Build script
Y ou can include the source for the plugin directly in the build script. This has the benefit that the plugin is
automatically compiled and included in the classpath of the build script without you having to do anything.
However, the plugin is not visible outside the build script, and so you cannot reuse the plugin outside the
build script it isdefined in.

bui | dSr c project
You can put the source for the plugin in the r oot Proj ect Di r / bui | dSrc/ src/ mai n/ gr oovy
directory. Gradle will take care of compiling and testing the plugin and making it available on the classpath
of the build script. The plugin is visible to every build script used by the build. However, it is not visible
outside the build, and so you cannot reuse the plugin outside the build it is defined in.

See Chapter 60, Organizing Build Logic for more details about the bui | dSr ¢ project.

Standalone project
Y ou can create a separate project for your plugin. This project produces and publishes a JAR which you can
then use in multiple builds and share with others. Generally, this JAR might include some custom plugins,
or bundle several related task classesinto asingle library. Or some combination of the two.

In our examples, we will start with the plugin in the build script, to keep things simple. Then we will look at
creating a standalone project.

Page 381 of 448

59.2. Writing asimple plugin
To create a custom plugin, you need to write an implementation of Pl ugi n. Gradle instantiates the plugin and
calls the plugin instance's Pl ugi n. appl y() method when the plugin is used with a project. The project
object is passed as a parameter, which the plugin can use to configure the project however it needs to. The
following sample contains a greeting plugin, which adds a hel | o task to the project.
Example59.1. A custom plugin
bui I d. gradl e

apply plugin: GeetingPlugin

class GeetingPlugin inplements Plugin<Project> {
voi d apply(Project project) {

project.task(' hello') << {
println "Hello fromthe G eetingPlugin"

Output of gradl e -qg hell o

> gradle -q hello
Hello fromthe GeetingPlugin

One thing to note is that a new instance of a given plugin is created for each project it is applied to. Also note
that the Pl ugi n classisageneric type. This example hasit receiving the Pl ugi n type as atype parameter. It's
possible to write unusual custom plugins that take different type parameters, but this will be unlikely (until
someone figures out more creative things to do here).

59.3. Getting input from the build

Most plugins need to obtain some configuration from the build script. One method for doing this is to use
extension objects. The Gradle Pr oj ect has an associated Ext ensi onCont ai ner object that helps keep
track of all the settings and properties being passed to plugins. You can capture user input by telling the
extension container about your plugin. To capture input, simply add a Java Bean compliant class into the
extension container's list of extensions. Groovy is a good language choice for a plugin because plain old Groovy
objects contain all the getter and setter methods that a Java Bean requires.

Let's add a simple extension object to the project. Here we add a gr eet i ng extension object to the project,
which alows you to configure the greeting.

Page 382 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/Plugin.html#apply(T)
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/plugins/ExtensionContainer.html

Example 59.2. A custom plugin extension

bui I d. gradl e
apply plugin: GeetingPlugin
greeting. nessage = 'H from G adl e'

cl ass GreetingPlugin inplenments Plugin<Project> {
voi d appl y(Project project) {
/1l Add the 'greeting' extension object
proj ect. extensions. create("greeting”, G eetingPlugi nExtension)
/1 Add a task that uses the configuration
proj ect.task(' hello') << {
println project.greeting. nessage

cl ass G eetingPl ugi nExt ensi on {
def String nessage = 'Hello from G eetingPl ugi n'

}

Output of gradl e -q hello

> gradle -q hello
H from Gadle

In this example, Gr eet i ngPl ugi nExt ensi on isaplain old Groovy object with a field called nressage.
The extension object is added to the plugin list with the name gr eet i ng. This object then becomes available
asaproject property with the same name as the extension object.

Oftentimes, you have several related properties you need to specify on a single plugin. Gradle adds a
configuration closure block for each extension object, so you can group settings together. The following
example shows you how this works.

Page 383 of 448

Example 59.3. A custom plugin with configuration closure
bui I d. gradl e
apply plugin: GeetingPlugin

greeting {
nessage
greeter

}

class G eetingPlugin inplenments Plugin<Project> {
voi d appl y(Project project) {
proj ect. extensions.create("greeting", G eetingPluginExtension)

project.task('hello') << {
println "${project.greeting. nessage} from ${project.qgreeting.greeter}”

cl ass GreetingPl ugi nExt ensi on {
String nessage
String greeter

Output of gradl e -q hello

> gradle -q hello
H from Gadle

In this example, several settings can be grouped together within the gr eet i ng closure. The name of the
closure block in the build script (gr eet i ng) needs to match the extension object name. Then, when the
closure is executed, the fields on the extension object will be mapped to the variables within the closure based
on the standard Groovy closure delegate feature.

59.4. Working with files in custom tasks and
plugins

When developing custom tasks and plugins, it's a good idea to be very flexible when accepting input
configuration for file locations. To do this, you can leverage the Pr oj ect . fi | e() method to resolve values
tofilesaslate as possible.

Page 384 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

Example 59.4. Evaluating file propertieslazily
buil d. gradl e
cl ass GreetingToFil eTask extends Defaul t Task {

def destination

File getDestination() {
project.file(destination)

}

@askActi on

def greet() {
def file = getDestination()
file.parentFile. nkdirs()
file.ewite "Hello!"

}

task greet(type: GreetingToFileTask) {
destination = { project.greetingFile }

}

task sayG eeting(dependsOn: greet) << {
println file(greetingFile).text

}

ext.greetingFile = "$buildDir/hello.txt"

Output of gradl e -q sayG eeting

> gradle -q sayGreeting
Hel | o!

In this example, we configure the gr eet task dest i nati on property as a closure, which is evaluated with
the Proj ect. fil e() method to turn the return value of the closure into a file object at the last minute. Y ou
will notice that in the example above we specify the gr eet i ngFi | e property value after we have configured
to use it for the task. This kind of lazy evaluation is a key benefit of accepting any value when setting a file
property, then resolving that value when reading the property.

59.5. A standalone project

Now we will move our plugin to a standalone project, so we can publish it and share it with others. This project
is simply a Groovy project that produces a JAR containing the plugin classes. Here is a simple build script for
the project. It applies the Groovy plugin, and adds the Gradle API as a compile-time dependency.

Page 385 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

Example 59.5. A build for a custom plugin

bui I d. gradl e

apply plugin: 'groovy'

dependenci es {

conpi | e gradl eApi ()
conpi | e | ocal G oovy()

Note: The code for this example can be found at sanpl es/ cust onPl ugi n/ pl ugi n in the ‘-al’
distribution of Gradle.

So how does Gradle find the Pl ugi n implementation? The answer is you need to provide a properties file in
thejar's META- | NF/ gr adl e- pl ugi ns directory that matches theid of your plugin.

Example 59.6. Wiring for a custom plugin

src/ mai n/ resour ces/ META- | NF/ gr adl e- pl ugi ns/ org. sanpl es. greeti ng. properties

i mpl enent ati on-cl ass=org. gradl e. G eeti ngPl ugi n

Notice that the properties filename matches the plugin id and is placed in the resources folder, and that the i npl em
property identifies the Pl ugi n implementation class.

59.5.1. Creating aplugin id

Plugin ids are fully qualified in a manner similar to Java packages (i.e. a reverse domain name). This helps to
avoid collisions and provides away to group plugins with similar ownership.

Your plugin id should be a combination of components that reflect namespace (a reasonable pointer to you or
your organization) and the name of the plugin it provides. For example if you had a Github account named
“foo” and your plugin was named “bar”, a suitable plugin id might be com gi t hub. f 0o. bar . Similarly, if
the plugin was developed at the baz organization, the plugin id might be or g. baz. bar .

Plugin ids should conform to the following:

® May contain any aphanumeric character, "', and '-".

® Must contain at least one'.' character separating the namespace from the name of the plugin.
¢ Conventionally use alowercase reverse domain name convention for the namespace.

® Conventionally use only lowercase characters in the name.

® org.gradl e andcom gradl ewar e namespaces may not be used.

® Cannot start or end with a".' character.

® Cannot contain consecutive'.' characters (i.e. '..").

Although there are conventional similarities between plugin ids and package names, package names are
generally more detailed than is necessary for a plugin id. For instance, it might seem reasonable to add “gradl€”

Page 386 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/Plugin.html

as a component of your plugin id, but since plugin ids are only used for Gradle plugins, this would be
superfluous. Generally, a namespace that identifies ownership and a name are all that are needed for a good
plugin id.

59.5.2. Publishing your plugin

If you are publishing your plugin internally for use within your organization, you can publish it like any other
code artifact. See the ivy and maven chapters on publishing artifacts.

If you are interested in publishing your plugin to be used by the wider Gradle community, you can publish it to
the Gradle plugin portal. This site provides the ability to search for and gather information about plugins
contributed by the Gradle community. See the instructions here on how to make your plugin available on this
Site.

59.5.3. Using your plugin in another project

To use a plugin in a build script, you need to add the plugin classes to the build script's classpath. To do this,
youusea“bui l dscript { }” block, as described in Section 21.4, “Applying plugins with the buildscript
block”. The following example shows how you might do this when the JAR containing the plugin has been
published to alocal repository:

Example 59.7. Using a custom plugin in another project

buil d. gradl e

bui I dscript {
repositories {
maven {
url wuri('../repo")

}
}

dependenci es {
cl asspath group: 'org.gradle', nane: 'custonPl ugin',
version: '1.0- SNAPSHOT'
}
}

apply plugin: 'org.sanples.greeting'

Alternatively, if your plugin is published to the plugin portal, you can use the incubating plugins DSL (see
Section 21.5, “ Applying plugins with the plugins DSL") to apply the plugin:
Example 59.8. Applying a community plugin with the plugins DSL

buil d. gradle

pl ugi ns {
id "comjfrog. bintray" version "0.4.1"

}

59.5.4. Writing tests for your plugin

You can use the Pr oj ect Bui | der class to create Pr oj ect instances to use when you test your plugin
implementation.

Page 387 of 448

http://plugins.gradle.org
http://plugins.gradle.org/submit
http://www.gradle.org/docs/2.3/javadoc/org/gradle/testfixtures/ProjectBuilder.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html

Example 59.9. Testing a custom plugin
src/test/groovy/org/ gradl e/ Geeti ngPl ugi nTest . gr oovy

cl ass GreetingPlugi nTest {
@est
public void greeterPl ugi nAddsGr eeti ngTaskToPr oj ect () {
Proj ect project = ProjectBuilder.builder().build()
proj ect. pl ugi nManager . apply 'org. sanpl es. greeting'

assert True(proj ect.tasks. hell o i nstanceof G eetingTask)

59.5.5. Using the Java Gradle Plugin development plugin

You can use the incubating Java Gradle Plugin development plugin to eliminate some of the boilerplate
declarations in your build script and provide some basic validations of plugin metadata. This plugin will
automatically apply the Java plugin, add the gr adl eApi () dependency to the compile configuration, and
perform plugin metadata validations as part of the j ar task execution.

Example 59.10. Using the Java Gradle Plugin Development plugin

bui I d. gradl e

apply plugin: 'java-gradl e-plugin'

59.6. Maintaining multiple domain objects

Gradle provides some utility classes for maintaining collections of objects, which work well with the Gradle
build language.

Page 388 of 448

Example 59.11. Managing domain objects
bui I d. gradl e
apply plugin: Docunentati onPl ugi n

books {
qui ckStart {
sourceFile = file('src/docs/quick-start')

}
user Gui de {

}
devel oper Gui de {

}
}

task books << {
books. each { book ->
println "$book. nane -> $book. sourceFil e"
}
}

cl ass Docunentati onPl ugi n i npl enents Pl ugi n<Proj ect > {
voi d appl y(Project project) {
def books = project.contai ner(Book)
books. al | {
sourceFile = project.file("src/docs/ $nane")

}

pr oj ect . ext ensi ons. books = books

}

cl ass Book {
final String nane
File sourceFile

Book(String nane) {
t hi s. name = nane

}

Output of gr adl e -q books

> gradl e -q books

devel oper Gui de -> /hone/user/ gradl e/ sanpl es/ user gui de/ or gani zeBui | dLogi ¢/ cust onPl ugi n'
qui ckStart -> /home/ user/ gradl e/ sanpl es/ user gui de/ or gani zeBui | dLogi ¢/ cust onPl ugi nWth
user Gui de -> /hone/ user/ gradl e/ sanpl es/ user gui de/ or gani zeBui | dLogi ¢/ cust onPl ugi nWt hD

The Pr oj ect . cont ai ner () methods create instances of NanedDomai nChj ect Cont ai ner , that have
many useful methods for managing and configuring the objects. In order to use atype with any of the pr oj ect . cc
methods, it MUST expose a property hamed “namne” as the unique, and constant, name for the object. The pr oj ec!
variant of the container method creates new instances by attempting to invoke the constructor of the class that
takes a single string argument, which is the desired name of the object. See the above link for pr oj ect . cont ai n
method variants that allow custom instantiation strategies.

Page 389 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:container(java.lang.Class)
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.NamedDomainObjectContainer.html

60

Organizing Build Logic

Gradle offers a variety of ways to organize your build logic. First of all you can put your build logic directly in
the action closure of atask. If a couple of tasks share the same logic you can extract this logic into a method. If
multiple projects of a multi-project build share some logic you can define this method in the parent project. If
the build logic gets too complex for being properly modeled by methods then you likely should implement your
logic with classes to encapsulate your logic. [25] Gradle makes this very easy. Just drop your classesin acertain
directory and Gradle automatically compiles them and puts them in the classpath of your build script.

Here isa summary of the ways you can organise your build logic:

® POGOs. You can declare and use plain old Groovy objects (POGOs) directly in your build script. The build
script iswritten in Groovy, after all, and Groovy provides you with lots of excellent ways to organize code.

® |nherited properties and methods. In a multi-project build, sub-projects inherit the properties and methods of
their parent project.

® Configuration injection. In a multi-project build, a project (usually the root project) can inject properties and
methods into another project.

® bui | dSr c project. Drop the source for your build classes into a certain directory and Gradle automatically
compiles them and includes them in the classpath of your build script.

® Shared scripts. Define common configuration in an external build, and apply the script to multiple projects,
possibly across different builds.

® Custom tasks. Put your build logic into a custom task, and reuse that task in multiple places.

® Custom plugins. Put your build logic into a custom plugin, and apply that plugin to multiple projects. The
plugin must be in the classpath of your build script. Y ou can achieve this either by using bui | d sour ces
or by adding an external library that contains the plugin.

® Execute an external build. Execute another Gradle build from the current build.

® Externd libraries. Use external libraries directly in your build file.

60.1. Inherited properties and methods

Any method or property defined in a project build script is also visible to al the sub-projects. Y ou can use this
to define common configurations, and to extract build logic into methods which can be reused by the
sub-projects.

Page 390 of 448

Example 60.1. Using inherited properties and methods

bui I d. gradl e

/1 Define an extra property
ext.srcDirNane = 'src/java'

/1 Define a nethod
def getSrcDir(project) {
return project.file(srcD rNange)

}

chil d/ buil d.gradle

task show << {
/1 Use inherited property
println 'srcDirNane: * + srcDirName

/1 Use inherited nethod
File srcDir = getSrcDir(project)
println "srcDir: ' + rootProject.relativePath(srcDir)

Output of gradl e -q show

> gradle -q show
srcDirNane: src/java
srcDir: child/src/java

60.2. Injected configuration

Y ou can use the configuration injection technique discussed in Section 57.1, “ Cross project configuration” and
Section 57.2, “ Subproject configuration” to inject properties and methods into various projects. Thisis generally
a better option than inheritance, for a number of reasons: The injection is explicit in the build script, You can
inject different logic into different projects, And you can inject any kind of configuration such as repositories,
plug-ins, tasks, and so on. The following sample shows how this works.

Page 391 of 448

Example 60.2. Using injected properties and methods
buil d. gradl e
subproj ects {

/1 Define a new property
ext.srcDirNane = 'src/java'

/'l Define a nethod using a closure as the nethod body
ext.srchDir = { file(srcDi rNane) }

/1l Define a task
task show << {
println '"project: ' + project.path

println 'srcDirNane: ' + srcDirNanme
File srcDir = srcDir()
println "srcDir: ' + rootProject.relativePath(srcDir)

}

/'l Inject special case configuration into a particul ar project
project(':child2") {
ext.srcDirNane = "$srcDirNane/ | egacy"

}

chil dl/build. gradle

/1 Use injected property and nethod. Here, we override the injected val ue

srcDirNane = 'java'
def dir = srcDir()

Output of gradl e -q show

> gradle -q show

project: :childl

srcDir Nane: java

srcDir: childl/java

project: :child2

srcDir Nane: src/javal/l egacy
srcDir: child2/src/javall egacy

60.3. Build sourcesinthe bui | dSr ¢ project

When you run Gradle, it checks for the existence of a directory called bui | dSr c. Gradle then automatically
compiles and tests this code and puts it in the classpath of your build script. You don't need to provide any
further instruction. This can be a good place to add your custom tasks and plugins.

For multi-project builds there can be only one bui | dSr ¢ directory, which has to be in the root project
directory.

Listed below is the default build script that Gradle appliesto the bui | dSr ¢ project:

Page 392 of 448

Figure 60.1. Default buildSrc build script

apply plugin: 'groovy'
dependenci es {

conpi | e gradl eApi ()

conpi |l e | ocal G oovy()

This means that you can just put your build source code in this directory and stick to the layout convention for a
JavalGroovy project (see Table 23.4, “Java plugin - default project layout™).

If you need more flexibility, you can provide your own bui | d. gr adl e. Gradle applies the default build script
regardless of whether there is one specified. This means you only need to declare the extra things you need.
Below is an example. Notice that this example does not need to declare a dependency on the Gradle API, as this
is done by the default build script:

Example 60.3. Custom buildSrc build script

bui I dSrc/buil d. gradl e

repositories {
mavenCentral ()

}

dependenci es {
testConpile '"junit:junit:4. 11
}

The bui | dSr ¢ project can be a multi-project build, just like any other regular multi-project build. However,
al of the projects that should be on the classpath of the actual build must be r unt i me dependencies of the root
project in bui | dSr c. You can do this by adding this to the configuration of each project you wish to export:

Example 60.4. Adding subprojectsto theroot buildSrc project

bui I dSrc/ buil d. gradl e

r oot Proj ect . dependenci es {
runtime project(path)

}

Note: The code for this example can be found at sanpl es/ mul ti Proj ect Bui | dSrc in the ‘-al’
distribution of Gradle.

60.4. Running another Gradle build from a build

You can use the Gr adl eBui | d task. You can use either of the di r or bui | dFi | e properties to specify
which build to execute, and the t asks property to specify which tasks to execute.

Page 393 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.GradleBuild.html

Example 60.5. Running another build from a build

bui I d. gradl e

task build(type: G adleBuild) {
buil dFil e = 'other.gradl e

tasks = ['hello']

ot her.gradl e

task hello << {

println "hello fromthe other build. "

}

Output of gradl e -q build

> gradle -q build
hello fromthe other build

60.5. External dependencies for the build script

If your build script needs to use external libraries, you can add them to the script's classpath in the build script
itself. You do this using the bui | dscri pt () method, passing in a closure which declares the build script

classpath.
Example 60.6. Declaring external dependenciesfor the build script
buil d. gradl e

bui I dscript {

repositories {
mavenCentral ()

}

dependenci es {
cl asspath group: 'commons-codec', nanme: 'commons-codec', version: '1.2'

}

The closure passed to the bui | dscri pt () method configuresa Scr i pt Handl er instance. Y ou declare the
build script classpath by adding dependencies to the cl asspat h configuration. This is the same way you
declare, for example, the Java compilation classpath. You can use any of the dependency types described in

Section 51.4, “How to declare your dependencies’, except project dependencies.

Having declared the build script classpath, you can use the classes in your build script as you would any other
classes on the classpath. The following example adds to the previous example, and uses classes from the build
script classpath.

Page 394 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/initialization/dsl/ScriptHandler.html

Example 60.7. A build script with external dependencies
buil d. gradl e

i nport org. apache. commons. codec. bi nary. Base64

bui I dscript {
repositories {
mavenCentral ()

}

dependenci es {

cl asspath group: 'commons-codec', name: 'commons-codec', version: '1.2'

}
}

task encode << {
def byte[] encodedString = new Base64().encode(' hello world\n'.getBytes())
println new String(encodedString)

Output of gr adl e -g encode

> gradl e -q encode
aGVsbG8gd29ybGXK

For multi-project builds, the dependencies declared in the a project's build script, are available to the build
scripts of all sub-projects.

60.6. Ant optional dependencies

For reasons we don't fully understand yet, external dependencies are not picked up by Ant's optional tasks. But
you can easily do it in another way. [2°]

Page 395 of 448

Example 60.8. Ant optional dependencies
buil d. gradl e

configurations {
ft pAnt Task

}

dependenci es {
ft pAnt Task("or g. apache. ant: ant - conmons-net: 1. 9. 3") {
modul e(" conmons- net : commons-net: 1. 4.1") {
dependencies "oro:oro:2.0.8:jar"

task ftp << {
ant {
t askdef (name: 'ftp',
cl assnane: 'org.apache.tool s. ant.taskdefs. optional . net. FTP',
cl asspat h: configurations. ft pAnt Task. asPat h)
ftp(server: "ftp.apache.org", userid: "anonynous", password: "me@rorg.conj
fileset(dir: "htdocs/manual ")

This is also a good example for the usage of client modules. The POM file in Maven Central for the
ant-commons-net task does not provide the right information for this use case.

60.7. Summary

Gradle offers you a variety of ways of organizing your build logic. You can choose what is right for your
domain and find the right balance between unnecessary indirections, and avoiding redundancy and a hard to
maintain code base. It is our experience that even very complex custom build logic is rarely shared between
different builds. Other build tools enforce a separation of this build logic into a separate project. Gradle spares
you this unnecessary overhead and indirection.

[25] Which might range from a single class to something very complex.

[26] In fact, we think thisis a better solution. Only if your buildscript and Ant's optional task need the same
library would you have to define it twice. In such a case it would be nice if Ant's optional task would
automatically pick up the classpath defined inthe“gr adl e. set ti ngs” file.

Page 396 of 448

o0l

Initialization Scripts

Gradle provides a powerful mechanism to allow customizing the build based on the current environment. This
mechanism also supports tools that wish to integrate with Gradle.

Note that thisis completely different from the “i ni t " task provided by the “bui | d-i ni t” incubating plugin
(see Chapter 47, Build Init Plugin).

61.1. Basic usage

Initialization scripts (ak.a. init scripts) are similar to other scripts in Gradle. These scripts, however, are run
before the build starts. Here are several possible uses:

® Set up enterprise-wide configuration, such as where to find custom plugins.

® Set up properties based on the current environment, such as a developer's machine vs. a continuous
integration server.

® Supply persona information about the user that is required by the build, such as repository or database
authentication credentials.

® Define machine specific details, such aswhere JDKs are installed.

® Register build listeners. External tools that wish to listen to Gradle events might find this useful.

* Register build loggers. Y ou might wish to customize how Gradle logs the eventsthat it generates.

One main limitation of init scriptsis that they cannot access classesin the bui | dSr ¢ project (see Section 60.3,
“Build sourcesinthe bui | dSr ¢ project” for details of this feature).

61.2. Using an init script

There are several waysto use an init script:

® Specify afile on the command line. The command line optionis-1 or--init-scri pt followed by the
path to the script. The command line option can appear more than once, each time adding another init script.

* Putafilecaledi nit.gradl einthe USER_ HOVE/ . gr adl e/ directory.

® Put afilethat endswith . gr adl e inthe USER_HOVE/ . gradl e/ i ni t. d/ directory.

* Put afilethat endswith . gr adl e inthe GRADLE_HOME/ i ni t. d/ directory, in the Gradle distribution.
This allows you to package up a custom Gradle distribution containing some custom build logic and plugins.
Y ou can combine this with the Gradle wrapper as a way to make custom logic available to all buildsin your
enterprise.

Page 397 of 448

If more than one init script is found they will al be executed, in the order specified above. Scriptsin a given
directory are executed in aphabetical order. This alows, for example, a tool to specify an init script on the
command line and the user to put one in their home directory for defining the environment and both scripts will
run when Gradle is executed.

61.3. Writing an init script

Similar to a Gradle build script, an init script is a Groovy script. Each init script has a Gr adl e instance
associated with it. Any property reference and method call in the init script will delegate to this Gr adl e
instance.

Each init script also implementsthe Scri pt interface.

61.3.1. Configuring projects from an init script

You can use an init script to configure the projects in the build. This works in a similar way to configuring
projects in a multi-project build. The following sample shows how to perform extra configuration from an init
script before the projects are evaluated. This sample uses this feature to configure an extra repository to be used
only for certain environments.

Example 61.1. Using init script to perform extra configuration befor e projects are evaluated
buil d. gradl e

repositories {
mavenCentral ()

}

task showRepos << {
println "All repos:”
println repositories.collect { it.name }

init.gradle

al | projects {
repositories {
mavenLocal ()

}

Outputof gradle --init-script init.gradle -gq showRepos
> gradle --init-script init.gradle -q showRepos

Al'l repos:
[MavenLocal , MavenRepo]

61.4. External dependencies for the init script

In Section 60.5, “External dependencies for the build script” it was explained how to add external dependencies
to a build script. Init scripts can also declare dependencies. You do this with the i ni t scri pt () method,
passing in a closure which declares the init script classpath.

Page 398 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.invocation.Gradle.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Script.html

Example 61.2. Declaring external dependenciesfor an init script
init.gradle
initscript {

repositories {
mavenCentral ()

}

dependenci es {
cl asspath group: 'org.apache.commons', nane: 'commons-nath', version: '2.0

}

The closure passed to the i ni t scri pt () method configuresa Scri pt Handl er instance. You declare the
init script classpath by adding dependencies to the cl asspat h configuration. This is the same way you
declare, for example, the Java compilation classpath. You can use any of the dependency types described in

Section 51.4, “How to declare your dependencies’, except project dependencies.

Having declared the init script classpath, you can use the classes in your init script as you would any other
classes on the classpath. The following example adds to the previous example, and uses classes from the init
script classpath.

Example 61.3. An init script with external dependencies
init.gradle
i nport org. apache. conmons. mat h. fracti on. Fracti on

initscript {
repositories {
mavenCentral ()
}
dependenci es {
cl asspath group: 'org.apache. conmons', nane: 'commons-neth', version: '2. 0

}
}

println Fraction. ONE_FI FTH. nul ti pl y(2)

Outputof gradl e --init-script init.gradle -q doNothing

> gradle --init-script init.gradle -gq doNothing
2/ 5

61.5. Init script plugins

Similar to a Gradle build script or a Gradle settings file, plugins can be applied on init scripts.

Page 399 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/initialization/dsl/ScriptHandler.html

Example 61.4. Using pluginsin init scripts

init.gradle

apply plugin: EnterpriseRepositoryPl ugin

cl ass EnterpriseRepositoryPlugin inplenents Plugin<G adl e> {
private static String ENTERPRI SE_REPCSI TORY_URL = "https://repo.gradl e.org/grad

voi d apply(G adl e gradle) {
/1 ONLY USE ENTERPRI SE REPO FOR DEPENDENCI ES
gradl e. al | proj ects{ project ->
project.repositories {

/1 Renove all repositories not pointing to the enterprise repositol
all { ArtifactRepository repo ->
if (!(repo instanceof MavenArtifactRepository) ||
repo.url.toString() != ENTERPRI SE_REPCSI TORY_URL) {
proj ect.logger.lifecycle "Repository ${repo.url} renoved.
renove repo

}

/1 add the enterprise repository
maven {
name " STANDARD ENTERPRI SE_REPCO'
url ENTERPRI SE_REPOCSI TORY_URL

bui I d. gradl e

reposi tori es{
mavenCent ral ()

}

task showRepositories << {
repositories. each{
println "repository: ${it.nane} ('${it.url}")"

}
Outputof gradle -q -1 init.gradle showRepositories
> gradle -q -1 init.gradle showRepositories

repository: STANDARD _ENTERPRI SE_REPO (' https://repo.gradle.org/gradle/repo')

The plugin in the init script ensures that only a specified repository is used when running the build.

When applying plugins within the init script, Gradle instantiates the plugin and calls the plugin instance's
Pl ugi n. appl y() method. The gr adl e object is passed as a parameter, which can be used to configure all
aspects of a build. Of course, the applied plugin can be resolved as an external dependency as described in
Section 61.4, “External dependenciesfor the init script”

Page 400 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/Plugin.html#apply(T)
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/Plugin.html#apply(T)

62

The Gradle Wrapper

The Gradle Wrapper (henceforth referred to as the “wrapper”) is the preferred way of starting a Gradle build.
The wrapper is a batch script on Windows, and a shell script for other operating systems. When you start a
Gradle build viathe wrapper, Gradle will be automatically downloaded and used to run the build.

The wrapper is something you should check into version control. By distributing the wrapper with your project,
anyone can work with it without needing to install Gradle beforehand. Even better, users of the build are
guaranteed to use the version of Gradle that the build was designed to work with. Of course, thisis also great for
continuous integration servers (i.e. servers that regularly build your project) as it requires no configuration on
the server.

You install the wrapper into your project by adding and configuring a W apper task in your build script, and
then executing it.

Example 62.1. Wrapper task

bui I d. gradl e

task wrapper(type: Wapper) {

gradl eVersion = '2.0'

}

After such an execution you find the following new or updated filesin your project directory (in case the default
configuration of the wrapper task is used).

Example 62.2. Wrapper generated files

Build layout

si npl e/
gr adl ew
gr adl ew. bat

gr adl e/ wr apper/
gr adl e-w apper . j ar
gr adl e- wr apper . properties

All of these files should be submitted to your version control system. This only needs to be done once. After
these files have been added to the project, the project should then be built with the added gradlew command.
The gradlew command can be used exactly the same way as the gradle command.

If you want to switch to a new version of Gradle you don't need to rerun the wrapper task. It is good enough to
change the respective entry in the gr adl e- wr apper . properti es file but if you want to take advantage

Page 401 of 448

http://en.wikipedia.org/wiki/Continuous_integration
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

of new functionality in the Gradle wrapper, then you would need to regenerate the wrapper files.

62.1. Configuration

If you run Gradle with gradlew, the wrapper checks if a Gradle distribution for the wrapper is available. If so, it
delegates to the gradle command of this distribution with all the arguments passed originally to the gradlew
command. If it didn't find a Gradle distribution, it will download it first.

When you configure the W apper task, you can specify the Gradle version you wish to use. The gradlew
command will download the appropriate distribution from the Gradle repository. Alternatively, you can specify
the download URL of the Gradle distribution. The gradlew command will use this URL to download the
distribution. If you specified neither a Gradle version nor download URL, the gradlew command will download
whichever version of Gradle was used to generate the wrapper files.

For the details on how to configure the wrapper, see the W apper classin the APl documentation.

If you don't want any download to happen when your project is built via gradlew, simply add the Gradle
distribution zip to your version control at the location specified by your wrapper configuration. A relative URL
is supported - you can specify a distribution file relative to the location of gr adl e- wr apper . properti es
file.

If you build viathe wrapper, any existing Gradle distribution installed on the machine isignored.

62.2. Unix file permissions

The Wrapper task adds appropriate file permissions to allow the execution of the gr adl ew *NIX command.
Subversion preserves this file permission. We are not sure how other version control systems deal with this.
What should alwayswork isto execute“sh gr adl ew’.

Page 402 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

63

Embedding Gradle

63.1. Introduction to the Tooling API

The 1.0 milestone 3 release brought anew API called the tooling API, which you can use for embedding Gradle
into your own custom software. This API allows you to execute and monitor builds, and to query Gradle about
the details of a build. The main audience for this APl will be IDEs, Cl servers, other Ul authors, or integration
testing of your Gradle plugins. However, it is open for anyone who needs to embed Gradle in their application.

A fundamental characteristic of the tooling APl isthat it operatesin a version independent way. This means that
you can use the same APl to work with different target versions of Gradle. The tooling APl is Gradle wrapper
aware and, by default, uses the same target Gradle version as that used by the wrapper-powered project.

Some features that the tooling API provides today:

® You can query Gradle for the details of a build, including the project hierarchy and the project dependencies,
external dependencies (including source and Javadoc jars), source directories and tasks of each project.

® You can execute abuild and listen to stdout and stderr logging and progress (e.g. the stuff shown in the
'status bar' when you run on the command line).

® Tooling API can download and install the appropriate Gradle version, similar to the wrapper. Bear in mind
that the tooling APl is wrapper aware so you should not need to configure a Gradle distribution directly.

® Theimplementation is lightweight, with only a small number of dependencies. It is also a well-behaved
library, and makes no assumptions about your classloader structure or logging configuration. This makes the
API easy to bundlein your application.

In the future we may support other interesting features:

* Performance. The API gives us the opportunity to do lots of caching, static analysis and preemptive work, to
make things faster for the user.

® Better progress monitoring and build cancellation. For example, allowing test execution to be monitored.

* Notifications when things in the build change, so that Uls and models can be updated. For example, your
Eclipse or IDEA project will update immediately, in the background.

® Validating and prompting for user supplied configuration.

® Prompting for and managing user credentials.

Page 403 of 448

63.2. Tooling API and the Gradle Build Daemon

Please take a look at Chapter 19, The Gradle Daemon. The Tooling API uses the daemon all the time. In fact,
you cannot officially use the Tooling API without the daemon. This means that subsequent calls to the Tooling
AP, be it model building requests or task executing requests can be executed in the same long-living process.

Chapter 19, The Gradle Daemon contains more details about the daemon, specifically information on situations
when new daemons are forked.

63.3. Quickstart

As the tooling API is an interface for developers, the Javadoc is the main documentation for it. Thisis exactly
our intention - we don't expect this chapter to grow very much. Instead we will add more code samples and
improve the Javadoc documentation. The main entry point to the tooling API isthe G- adl eConnect or. You
can navigate from there to find code samples and other instructions. Another very important set of resources are
the samples that live in “$gr adl eHorre/ sanpl es/ t ool i ngApi ”. These samples also specify al of the
required dependencies for the Tooling API, along with the suggested repositories to obtain the jars from.

Page 404 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/tooling/GradleConnector.html

64

Comparing Builds

Build comparison support is an incubating feature. This means that it is incomplete and not yet at regular
Gradle production quality. This also means that this Gradle User Guide chapter is awork in progress.

Gradle provides support for comparing the outcomes (e.g. the produced binary archives) of two builds. There
are several reasons why you may want to compare the outcomes of two builds. Y ou may want to compare:

® A build with anewer version of Gradle than it's currently using (i.e. upgrading the Gradle version).

* A Gradle build with abuild executed by another tool such as Apache Ant, Apache Maven or something else
(i.e. migrating to Gradle).

* The same Gradle build, with the same version, before and after a change to the build (i.e. testing build
changes).

By comparing builds in these scenarios you can make an informed decision about the Gradle upgrade, migration
to Gradle or build change by understanding the differences in the outcomes. The comparison process produces a
HTML report outlining which outcomes were found to be identical and identifying the differences between
non-identical outcomes.

64.1. Definition of terms

The following are the terms used for build comparison and their definitions.

“Build”
In the context of build comparison, a build is not necessarily a Gradle build. It can be any invokable
“process’ that produces observable “outcomes’. At least one of the builds in a comparison will be a Gradle
build.

“Build Outcome’
Something that happens in an observable manner during a build, such as the creation of a zip file or test
execution. These are the things that are compared.

“ Sour ce Build”
The build that comparisons are being made against, typically the build in its “current” state. In other words,
the left hand side of the comparison.

“Target Build”
The build that is being compared to the source build, typically the “proposed” build. In other words, the

Page 405 of 448

right hand side of the comparison.

“Host Build”
The Gradle build that executes the comparison process. It may be the same project as either the “target” or
“source” build or may be a completely separate project. It does not need to be the same Gradle version as the
“source” or “target” builds. The host build must be run with Gradle 1.2 or newer.

“Compar ed Build Outcome”
Build outcomes that are intended to be logically equivalent in the “source” and “target” builds, and are
therefore meaningfully comparable.

“Uncompared Build Outcome’
A build outcome is uncompared if alogical equivalent from the other build cannot be found (e.g. a build
produces a zip file that the other build does not).

“Unknown Build Outcome”
A build outcome that cannot be understood by the host build. This can occur when the source or target build
isanewer Gradle version than the host build and that Gradle version exposes new outcome types. Unknown
build outcomes can be compared in so far as they can be identified to be logically equivalent to an unknown
build outcome in the other build, but no meaningful comparison of what the build outcome actually is can be
performed. Using the latest Gradle version for the host build will avoid encountering unknown build
outcomes.

64.2. Current Capabilities

Asthisisan incubating feature, alimited set of the eventual functionality has been implemented at this time.

64.2.1. Supported builds

Only support for comparing Gradle builds is available at this time. Both the source and target build must
execute with Gradle newer or equal to version 1. 0. The host build must be at least version 1. 2.

Future versions will provide support for executing builds from other build systems such as Apache Ant or
Apache Maven, as well as support for executing arbitrary processes (e.g. shell script based builds)

64.2.2. Supported build outcomes

Only support for comparing build outcomes that are zi p archivesis supported at thistime. Thisincludesj ar , war
and ear archives.

Future versions will provide support for comparing outcomes such as test execution (i.e. which tests were
executed, which tests failed, etc.)

Page 406 of 448

64.3. Comparing Gradle Builds

The conpar e- gr adl e- bui | ds plugin can be used to facilitate a comparison between two Gradle builds.
The plugin adds a Conpar eGr adl eBui | ds task named “conpar eG adl eBui | ds” to the project. The
configuration of this task specifies what is to be compared. By default, it is configured to compare the current
build with itself using the current Gradle version by executing the tasks: “cl ean assenbl e”.

apply plugin: 'conpare-gradl e-buil ds’

Thistask can be configured to change what is compared.

conpar eG adl eBui | ds {

sour ceBui | d {
projectDir "/projects/project-a"
gradl eVersion "1.1"

}

targetBuild {
projectDir "/projects/project-b"
gradl eVersion "1.2"

The example above specifies a comparison between two different projects using two different Gradle versions.

64.3.1. Trying Gradle upgrades

Y ou can use the build comparison functionality to very quickly try anew Gradle version with your build.

To try your current build with a different Gradle version, simply add the following to the bui | d. gr adl e of
the root project.

apply plugin: 'conpare-gradl e-buil ds’

conpar eG adl eBui | ds {

target Bui |l d. gradl eVersi on = "«gradl e versi on»"

}

Then simply execute the compareGradleBuilds task. You will see the console output of the “source” and
“target” builds asthey are executing.

Page 407 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.buildcomparison.gradle.CompareGradleBuilds.html

64.3.2. The comparison “result”

If there are any differences between the compared outcomes, the task will fail. The location of the HTML report
providing insight into the comparison will be given. If all compared outcomes are found to be identical, and
there are no uncompared outcomes, and there are no unknown build outcomes, the task will succeed.

You can configure the task to not fail on compared outcome differences by setting the i gnor eFai | ur es

property to true.

conpar eG adl eBui | ds {

i gnoreFai lures = true

}

64.3.3. Which archives are compared?

For an archive to be a candidate for comparison, it must be added as an artifact of the archives configuration.
Take alook at Chapter 52, Publishing artifacts for more information on how to configure and add artifacts.

The archive must also have been produced by a Zi p, Jar, War, Ear task. Future versions of Gradle will
support increased flexibility in this area.

Page 408 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ear.Ear.html

65

vy Publishing (new)

This chapter describes the new incubating Ivy publishing support provided by the “i vy- publ i sh”
plugin. Eventually this new publishing support will replace publishing viathe Upl oad task.

If you are looking for documentation on the original Ivy publishing support using the Upl oad task please
see Chapter 52, Publishing artifacts.

This chapter describes how to publish build artifacts in the Apache Ivy format, usually to a repository for
consumption by other builds or projects. What is published is one or more artifacts created by the build, and an
Ivy module descriptor (normally i vy. xml) that describes the artifacts and the dependencies of the artifacts, if

any.

A published vy module can be consumed by Gradle (see Chapter 51, Dependency Management) and other tools
that understand the Ivy format.

65.1. The“i vy- publ i sh” Plugin
The ability to publish in the vy format is provided by the“i vy- publ i sh” plugin.

The “publ i shi ng” plugin creates an extension on the project named “publ i shi ng” of type

Publ i shi ngExt ensi on. This extension provides a container of named publications and a container of
named repositories. The “i vy- publ i sh” plugin works with | vyPubl i cati on publications and

| vyArtifact Repository repositories.

Example 65.1. Applying the “ivy-publish” plugin
buil d. gradl e

apply plugin: "ivy-publish’

Applyingthe“i vy- publ i sh” plugin does the following:

® Appliesthe“publ i shi ng” plugin
® Establishesaruleto automatically create a Gener at el vyDescri pt or task for each
I vyPubl i cat i on added (see Section 65.2, “Publications”).
® Establishesaruleto automaticaly create a Publ i shTol vyReposi t ory task for the combination of

Page 409 of 448

http://ant.apache.org/ivy/
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.tasks.GenerateIvyDescriptor.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html

each | vyPubl i cat i on added (see Section 65.2, “Publications’), with each
I vyArtifact Repository added (see Section 65.3, “Repositories’).

65.2. Publications

If you are not familiar with project artifacts and configurations, you should read Chapter 52, Publishing
artifacts, which introduces these concepts. This chapter also describes “publishing artifacts’ using a
different mechanism than what is described in this chapter. The publishing functionality described here
will eventually supersede that functionality.

Publication objects describe the structure/configuration of a publication to be created. Publications are published
to repositories via tasks, and the configuration of the publication object determines exactly what is published.
All of the publications of a project are defined in the Publ i shi ngExt ensi on. get Publ i cati ons()
container. Each publication has a unique name within the project.

For the “i vy- publ i sh” plugin to have any effect, an | vyPubl i cat i on must be added to the set of
publications. This publication determines which artifacts are actually published as well as the detailsincluded in
the associated vy module descriptor file. A publication can be configured by adding components, customizing
artifacts, and by modifying the generated module descriptor file directly.

65.2.1. Publishing a Software Component

The simplest way to publish a Gradle project to an Ivy repository is to specify a Sof t war eConponent to
publish. The components presently available for publication are:

Table 65.1. Software Components

Name Provided By Artifacts Dependencies
java JavaPlugin Generated jar file Dependencies from ‘runtime' configuration
web War Plugin Generated war file No dependencies

In the following example, artifacts and runtime dependencies are taken from the “java’ component, which is
added by the Java Pl ugi n.

Example 65.2. Publishing a Java moduleto I vy

buil d. gradl e

publications {
i vyJava(l vyPublication) {

from conponents. j ava

}

Page 410 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:publications
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/component/SoftwareComponent.html

65.2.2. Publishing custom artifacts

It is also possible to explicitly configure artifacts to be included in the publication. Artifacts are commonly
supplied asraw files, or asinstances of Abst r act Ar chi veTask (e.g. Jar, Zip).

For each custom artifact, it is possible to specify the name, ext ensi on, t ype, cl assi fi er and conf
values to use for publication. Note that each artifacts must have a unique name/classifier/extension combination.

Configure custom artifacts as follows:

Example 65.3. Publishing additional artifact to Ivy
buil d. gradl e

task sourcedar(type: Jar) {
from sourceSets. mai n.java
classifier "source"
}
publ i shi ng {
publ i cations {
i vy(lvyPublication) {

from conponents. java

artifact(sourcedar) {
type "source"
conf "runtinme"

Seethel vyPubl i cati on classin the APl documentation for more detailed information on how artifacts can
be customized.

65.2.3. Identity values for the published project

The generated |vy module descriptor file contains an <i nf 0> element that identifies the module. The default
identity values are derived from the following:

® organi sation-Project.get Goup()
®* nodul e - Proj ect. get Nane()

®* revision-Project.getVersion()

® status-Project.getStatus()

® branch - (not set)

Overriding the default identity values is easy: simply specify the or gani sati on, nodul e or r evi si on
attributes when configuring the | vyPubl i cat i on. Thest at us and br anch attributes can be set viathe desct
property (see | vyModul eDescri pt or Spec). The descri pt or property can also be used to add
additional custom elements as children of the <i nf 0> element.

Page 411 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:group
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:name
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:version
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:status
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.IvyModuleDescriptorSpec.html

Example 65.4. customizing the publication identity

bui I d. gradl e

publ i shi ng {
publications {
i vy(lvyPublication) {
organi sation 'org.gradle.sanpl e’
nmodul e ' proj ect 1- sanpl e’
revision '1.1'
descriptor.status = 'm | estone'

descriptor.branch = 'testing'
descriptor.extralnfo 'http://ny. nanespace', 'nyEl ement', 'Sone val ue'

from conponents. java

Gradle will handle any valid Unicode character for organisation,
module and revision (as well as artifact name, extension and
classifier). The only values that are explicitly prohibited are"\ ', '/ '
and any 1SO control character. The supplied values are validated
early during publication.

Certain repositories are not able
to handle all supported
characters. For example, the "'
character cannot be used as an
identifier when publishing to a
65.2.4. Modifying the generated module fillesystem-backed repository on
descriptor Windows.

At times, the module descriptor file generated from the project
information will need to be tweaked before publishing. The “i vy- publ i sh” plugin provides a hook to allow
such modification.

Example 65.5. Customizing the module descriptor file

buil d. gradl e

publications {
i vyCust om(| vyPubl i cati on) {
descriptor.w thXm {
asNode() . i nfo[0] . appendNode("' descri ption',

"A denpnstration of ivy descriptor customni

In this example we are simply adding a 'description’ element to the generated Ivy dependency descriptor, but
this hook alows you to modify any aspect of the generated descriptor. For example, you could replace the
version range for a dependency with the actual version used to produce the build.

Seel vyModul eDescri pt or Spec. wi t hXm () inthe APl documentation for more information.

It is possible to modify virtually any aspect of the created descriptor should you need to. This means that it is
also possible to modify the descriptor in such a way that it is no longer a valid Ivy module descriptor, so care
must be taken when using this feature.

Page 412 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.IvyModuleDescriptorSpec.html#org.gradle.api.publish.ivy.IvyModuleDescriptorSpec:withXml(org.gradle.api.Action)

The identifier (organisation, module, revision) of the published module is an exception; these values cannot be
modified in the descriptor using the "withXML" hook.

65.2.5. Publishing multiple modules

Sometimes it's useful to publish multiple modules from your Gradle build, without creating a separate Gradle
subproject. An exampleis publishing a separate APl and implementation jar for your library. With Gradle thisis
simple:

Example 65.6. Publishing multiple modules from a single pr oj ect

buil d. gradl e

task apiJar(type: Jar) {
baseNane "publi shi ng-api"
from sour ceSet s. mai n. out put
exclude " **/inpl/**

}
publ i shi ng {
publications {
i mpl (1 vyPublication) {
organi sation 'org.gradle.sanple.inpl’
nmodul e ' proj ect 2-i npl*

revision '2. 3

from conponents. java
}
api (1 vyPublication) {
organi sation 'org.gradl e. sanpl e’
nmodul e ' proj ect 2-api '
revision '2'

If aproject defines multiple publications then Gradle will publish each of these to the defined repositories. Each
publication must be given a unique identity as described above.

65.3. Repositories

Publications are published to repositories. The repositories to publish to are defined by the
Publ i shi ngExt ensi on. get Reposi tori es() container.
Example 65.7. Declaring repositoriesto publish to
buil d. gradle
repositories {

ivy {
/'l change to point to your repo, e.g. http://ny.org/repo

url "$buil dDir/repo"

Page 413 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:repositories
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:repositories

The DSL used to declare repositories for publishing is the same DSL that is used to declare repositories for
dependencies (Reposi t or yHandl er). However, in the context of Ivy publication only the repositories
created by thei vy () methods can be used as publication destinations. Y ou cannot publishan | vyPubl i cat i on
to aMaven repository for example.

65.4. Performing a publish

The “i vy- publ i sh” plugin automatically creates a Publ i shTol vyReposi tory task for each
I vyPublicationandl vyArtifactRepository combinationinthe publ i shi ng. publicati ons
and publ i shi ng. reposi t ori es containers respectively.

The created task isnamed “publ i sh« PUBNAME»Publ i cat i onTo« REPONAME»Reposi t ory”, whichis
“publ i shlvyJavaPubl i cati onTol vyReposi tory” for this example. This task is of type
Publ i shTol vyReposi tory.

Example 65.8. Choosing a particular publication to publish

buil d. gradl e

apply plugin: 'java
apply plugin: "ivy-publish

group = 'org.gradle.sanple
version = '1. 0

publ i shi ng {
publications {
i vyJava(l vyPublication) {
from conponents. j ava
}
}
repositories {
ivy {
/'l change to point to your repo, e.g. http://ny.org/repo
url "$buil dbDir/repo”

Output of gr adl e publ i shl vyJavaPubl i cati onTol vyRepository

> gradl e publishlvyJavaPublicati onTol vyRepository
. gener at eDescriptorFi | eForlvyJavaPublication
:conpi l eJava UP- TO- DATE

: processResour ces UP- TO DATE

:cl asses UP- TO- DATE

Jjar

:publ i shlvyJavaPubl i cati onTol vyRepository

BU LD SUCCESSFUL

Total tine: 1 secs

Page 414 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html

65.4.1. The“publ i sh” lifecycletask

The “publ i sh” plugin (that the “i vy- publ i sh” plugin implicitly applies) adds a lifecycle task that can be
used to publish all publications to all applicable repositories named “publ i sh”.

In more concrete terms, executing thistask will execute all Publ i shTol vyReposi t ory tasksin the project.
Thisisusually the most convenient way to perform a publish.

Example 65.9. Publishing all publicationsviathe “publish” lifecycle task

Output of gr adl e publ i sh

> gradl e publish

: gener at eDescri ptor Fi | eForl vyJavaPubl i cation
:conpi | eJava UP- TO DATE

: processResour ces UP- TO- DATE

:cl asses UP- TO- DATE

tjar

: publ i shlvyJavaPubl i cati onTol vyRepository

> publish

BU LD SUCCESSFUL

Total tinme: 1 secs

65.5. Generating the Ivy module descriptor file
without publishing

At times it is useful to generate the Ivy module descriptor file (normally i vy. xm) without publishing your

module to an Ivy repository. Since descriptor file generation is performed by a separate task, thisis very easy to
do.

The “i vy-publish” plugin creates one Gener at el vyDescri ptor task for each registered

| vyPubl i cati on, named “gener at eDescri pt or Fi | eFor « PUBNAME»Publ i cati on”, which will
be“gener at eDescri pt or Fi | eFor | vyJavaPubl i cat i on” for the previous example of the“i vyJava
" publication.

You can specify where the generated Ivy file will be located by setting the dest i nat i on property on the
generated task. By default thisfileiswritten to “bui | d/ publ i cati ons/ « PUBNAME»/ i vy. xm ”.

Page 415 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.tasks.GenerateIvyDescriptor.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.IvyPublication.html

Example 65.10. Generating the Ivy module descriptor file

bui I d. gradl e

nmodel {
t asks. gener at eDescri pt or Fi | eFor | vyCust onPubl i cati on {

destination = file("$buil dDir/generated-ivy.xnm")

}

Output of gr adl e gener at eDescri ptorFi | eFor | vyCust onPubl i cati on

> gradl e generateDescriptorFil eForlvyCustonPublication
s gener at eDescri ptor Fi | eFor |l vyCust onPubl i cati on

BU LD SUCCESSFUL

Total tinme: 1 secs

The“i vy- publ i sh” plugin leverages some experimental support for late plugin configuration, and the Gener
task will not be constructed until the publishing extension is configured. The smplest way to ensure that

the publishing plugin is configured when you attempt to access the Gener at el vyDescri pt or task is

to place the accessinside anodel block, as the example above demonstrates.

The same applies to any attempt to access publication-specific tasks like Publ i shTol vyReposi t ory
. These tasks should be referenced from within anmodel block.

65.6. Complete example

The following example demonstrates publishing with a multi-project build. Each project publishes a Java
component and a configured additional source artifact. The descriptor file is customized to include the project

description for each project.

Page 416 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html

Example 65.11. Publishing a Java module
buil d. gradl e

subproj ects {
apply plugin: 'java
apply plugin: "ivy-publish'

version = '1.0
group = 'org.gradle.sanple

repositories {
mavenCent ral ()

}

task sourcelar(type: Jar) {
from sourceSets. mai n.java
classifier "source"

}

project(":projectl") {
description = "The first project”

dependenci es {
conpile "junit:junit:4.11', project(':project2')
}
}

project (":project2") {
description = "The second project"”

dependenci es {
conpi l e ' conmons-col | ecti ons: conmobns-col | ections: 3.1
}
}

subproj ects {
publ i shing {
repositories {
vy {
/'l change to point to your repo, e.g. http://ny.org/repo
url "${rootProject.buildDir}/repo"
}
}

publications {
i vy(lvyPublication) {
from conponents. j ava
artifact(sourcedar) {
type "source"
conf "runtine"
}
descriptor.wthXm {
asNode() . i nfo[0] . appendNode("' descri ption', description)
}

Theresult isthat the following artifacts will be published for each project:

Page 417 of 448

® The lvy module descriptor file: “i vy- 1. 0. xm ”.
® Theprimary “jar” artifact for the Java component: “pr oj ect 1-1. 0. j ar”.
* Thesource“jar” artifact that has been explicitly configured: “pr oj ect 1- 1. O-source. jar”.

When pr oj ect 1 is published, the module descriptor (i.e. thei vy. xm file) that is produced will look like:

Example 65.12. Example generated ivy.xml

out put-ivy. xm Note that «PUBLI CATI ON- Tl VE- ST/
in this example lvy module
descriptor will be the timestamp

<?xm version="1.0" encodi ng="UTF- 8" ?>
<i vy- nodul e version="2.0">
<i nfo organi sati on="org. gradl e. sanpl e" nodul e=" pr o] IR = MR (s G (=S oi7 [o] (6] FS
<description>The first project</description> generated.
</inf o>
<confi gurati ons>
<conf nanme="default" visibility="public" extends=
<conf name="runtinme" visibility="public"/>
</ confi gurations>
<publ i cati ons>
<artifact name="projectl"” type="jar" ext="jar" conf="runtine"/>
<artifact nanme="projectl" type="source" ext="jar" conf="runtinme" mclassifier=

</ publ i cati ons>
<dependenci es>
<dependency org="junit" name="junit" rev="4.11" conf="runtine->default"/>
<dependency org="org. gradl e. sanpl e" name="project2" rev="1.0" conf="runti ne- &gyf
</ dependenci es>
</i vy- nodul e>

65.7. Future features

The“i vy- publ i sh” plugin functionality as described above is incomplete, as the feature is still incubating.
In upcoming Gradle releases, the functionality will be expanded to include (but not limited to):

® Convenient customization of module attributes (modul e, or gani sat i on etc.)
® Convenient customization of dependencies reported in modul e descri pt or.
® Multiple discrete publications per project

Page 418 of 448

66

Maven Publishing (new)

This chapter describes the new incubating Maven publishing support provided by the “maven- publ i sh
" plugin. Eventually this new publishing support will replace publishing viathe Upl oad task.

If you are looking for documentation on the origina Maven publishing support using the Upl oad task
please see Chapter 52, Publishing artifacts.

This chapter describes how to publish build artifacts to an Apache Maven Repository. A module published to a
Maven repository can be consumed by Maven, Gradle (see Chapter 51, Dependency Management) and other
tools that understand the Maven repository format.

66.1. The“maven- publ i sh” Plugin

The ability to publish in the Maven format is provided by the “maven- publ i sh” plugin.

The “publ i shing” plugin creates an extension on the project named “publ i shing” of type
Publ i shi ngExt ensi on. This extension provides a container of named publications and a container of
named repositories. The “maven- publ i sh” plugin works with MavenPubl i cat i on publications and
MavenArti f act Reposi t ory repositories.

Example 66.1. Applying the 'maven-publish' plugin
buil d. gradl e

apply plugin: 'maven-publish’

Applying the “maven- publ i sh” plugin does the following:

® Appliesthe*publ i shi ng” plugin

® Establishesaruleto automatically create a Gener at eMavenPomtask for each MavenPubl i cat i on
added (see Section 66.2, “Publications’).

® Establishesaruleto automatically create a Publ i shToMavenReposi t ory task for the combination of
each MavenPubl i cat i on added (see Section 66.2, “ Publications’), with each
MavenArti f act Reposi t ory added (see Section 66.3, “ Repositories’).

® Establishesaruleto automatically create a Publ i shToMavenLocal task for each
MavenPubl i cat i on added (seeSection 66.2, “Publications”).

Page 419 of 448

http://maven.apache.org/
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.maven.tasks.GenerateMavenPom.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/publish/maven/tasks/PublishToMavenLocal.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.maven.MavenPublication.html

66.2. Publications

If you are not familiar with project artifacts and configurations, you should read the Chapter 52,
Publishing artifacts that introduces these concepts. This chapter also describes “publishing artifacts’
using a different mechanism than what is described in this chapter. The publishing functionality described
here will eventually supersede that functionality.

Publication objects describe the structure/configuration of a publication to be created. Publications are published
to repositories via tasks, and the configuration of the publication object determines exactly what is published.
All of the publications of a project are defined in the Publ i shi ngExt ensi on. get Publ i cati ons()

container. Each publication has a unique name within the project.

For the “maven- publ i sh” plugin to have any effect, a MavenPubl i cat i on must be added to the set of
publications. This publication determines which artifacts are actually published as well as the detailsincluded in
the associated POM file. A publication can be configured by adding components, customizing artifacts, and by
modifying the generated POM file directly.

66.2.1. Publishing a Software Component

The simplest way to publish a Gradle project to a Maven repository is to specify a Sof t war eConponent to
publish. The components presently available for publication are:

Table 66.1. Software Components

Name Provided By Artifacts Dependencies
java Chapter 23, The Java Plugin ~ Generated jar file Dependencies from 'runtime' configuration

web Chapter 26, The War Plugin Generated war file No dependencies

In the following example, artifacts and runtime dependencies are taken from the “java’ component, which is
added by the Java Pl ugi n.

Example 66.2. Adding a MavenPublication for a Java component

buil d. gradl e

publ i shi ng {
publications {
mavenJava(MavenPubl i cati on) {

from conponents. j ava

Page 420 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:publications
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/component/SoftwareComponent.html

66.2.2. Publishing custom artifacts

It is also possible to explicitly configure artifacts to be included in the publication. Artifacts are commonly
supplied asraw files, or asinstances of Abst r act Ar chi veTask (e.g. Jar, Zip).

For each custom artifact, it is possible to specify the ext ensi on and cl assi fi er values to use for
publication. Note that only one of the published artifacts can have an empty classifier, and all other artifacts
must have a unique classifier/extension combination.

Configure custom artifacts as follows:

Example 66.3. Adding additional artifact to a MavenPublication
buil d. gradl e

task sourceldar(type: Jar) {
from sourceSets. mai n. al | Java

}

publ i shi ng {
publ i cations {
mavenJava(MavenPubl i cati on) {
from conponents. java

artifact sourceldar {
classifier "sources"

Seethe MavenPubl i cat i on classin the APl documentation for more information about how artifacts can be
customized.

66.2.3. |dentity valuesin the generated POM

The attributes of the generated POM file will contain identity values derived from the following project
properties:

® groupld-Project.getGoup()
e artifactld-Project.getName()
® version-Project.getVersion()

Overriding the default identity values is easy: simply specify the groupl d, artifactld or versi on
attributes when configuring the MavenPubl i cat i on.

Page 421 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:group
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:name
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:version

Example 66.4. customizing the publication identity
buil d. gradl e

publ i shi ng {
publications {
maven(MavenPubl i cation) {
groupld 'org.gradl e. sanpl e
artifactld 'projectl-sanple'
version '1.1'

from conponents. j ava

Maven restricts 'groupld' and 'artifactld' to alimited character set ([A- Za-z0-9_\\-.]+
) and Gradle enforces this restriction. For 'version' (as well as
artifact 'extension' and 'classifier), Gradle will handle any valid
Unicode character.

Certain repositories will not be
able to handle all supported
characters. For example, the "'
character cannot be used as an
identifier when publishing to a
filesystem-backed repository on
Windows.

The only Unicode values that are explicitly prohibited are *, /'
and any SO control character. Supplied values are validated early
in publication.

66.2.4. Modifying the generated POM

The generated POM file may need to be tweaked before publishing. The “maven- publ i sh” plugin provides a
hook to allow such modification.

Example 66.5. M odifying the POM file

bui I d. gradl e

publ i cations {
mavenCust om(MavenPubl i cati on) {
pom wi t hXm {
asNode() . appendNode("' description',

" A denpnstration of naven POM custoni zation')

In this example we are adding a 'description’ element for the generated POM. With this hook, you can modify
any aspect of the POM. For example, you could replace the version range for a dependency with the actual
version used to produce the build.

See MavenPom wi t hXm () inthe APl documentation for more information.

It is possible to modify virtually any aspect of the created POM should you need to. This means that it is also
possible to modify the POM in such away that it is no longer a valid Maven Pom, so care must be taken when
using this feature.

Page 422 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.maven.MavenPom.html#org.gradle.api.publish.maven.MavenPom:withXml(org.gradle.api.Action)

The identifier (groupld, artifactld, version) of the published module is an exception; these values cannot be
modified in the POM using the "withXML"™ hook.

66.2.5. Publishing multiple modules

Sometimes it's useful to publish multiple modules from your Gradle build, without creating a separate Gradle
subproject. An exampleis publishing a separate APl and implementation jar for your library. With Gradle thisis
simple:

Example 66.6. Publishing multiple modules from a single proj ect

buil d. gradl e

task apiJar(type: Jar) {
baseNane "publi shing-api”
from sour ceSet s. nmai n. out put
exclude ' **/inpl/**'

}

publ i shi ng {
publications {
i mpl (MavenPubl i cati on) {
groupld 'org.gradle.sanple.inpl’
artifactld 'project2-inpl'
version '2.3'

from conponents. java

}

api (MavenPubl i cation) {
groupld 'org.gradl e. sanpl e
artifactld 'project2-api’
version '2'

artifact apiJar

If aproject defines multiple publications then Gradle will publish each of these to the defined repositories. Each
publication must be given a unique identity as described above.

66.3. Repositories

Publications are published to repositories. The repositories to publish to are defined by the
Publ i shi ngExt ensi on. get Reposi t ori es() container.

Page 423 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:repositories
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:repositories

Example 66.7. Declaring repositoriesto publish to
buil d. gradl e

publ i shi ng {
repositories {
maven {
/1l change to point to your repo, e.g. http://ny.org/repo

url "$buil dDir/repo”

The DSL used to declare repositories for publication is the same DSL that is used to declare repositories to
consume dependencies from, Reposi t or yHandl er . However, in the context of Maven publication only
MavenArti f act Reposi t ory repositories can be used for publication.

66.4. Performing a publish

The “maven- publ i sh” plugin automatically creates a Publ i shToMavenReposi t ory task for each
MavenPubl i cati on and MavenArti f act Reposi t ory combinationinthe publ i shi ng. publ i cati on:
and publ i shi ng. reposi t ori es containers respectively.

The created task isnamed “publ i sh« PUBNAME»Publ i cat i onTo« REPONAME»Reposi t ory”.

Page 424 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html

Example 66.8. Publishing a project to a Maven repository

bui I d. gradl e

apply plugin: 'java
apply plugin: 'nmaven-publish'

group = 'org.gradle.sanple
version = '1. 0

publ i shi ng {
publ i cations {
mavenJava(MavenPubl i cati on) {
from conponents. j ava
}
}

}
publ i shing {
repositories {
maven {
/'l change to point to your repo, e.g. http://my.org/repo
url "$buil dDir/repo"

Output of gr adl e publ i sh

> gradl e publish

: gener at ePonfi | eFor MavenJavaPubl i cati on
:conpi | eJava

: processResources UP- TO DATE

:cl asses

Jjar

: publ i shMavenJavaPubl i cati onToMavenRepository
I publish

BU LD SUCCESSFUL

Total tinme: 1 secs

In this example, a task named “publ i shMavenJavaPubl i cati onToMavenReposi t ory” is created,
which is of type Publ i shToMavenReposi t ory. This task is wired into the publ i sh lifecycle task.
Executing “gr adl e publ i sh” buildsthe POM fileand all of the artifacts to be published, and transfers them
to the repository.

66.5. Publishing to Maven Locd

For integration with alocal Maven installation, it is sometimes useful to publish the module into the local .m2
repository. In Maven parlance, this is referred to as 'installing' the module. The “nmaven- publ i sh” plugin
makes this easy to do by automatically creating a Publi shToMavenLocal task for each
MavenPubl i cati oninthepubl i shi ng. publ i cati ons container. Each of these tasks is wired into the
publ i shToMavenLocal lifecycle task. You do not need to have “mavenLocal” in your
“publishing.repositories’ section.

Page 425 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/publish/maven/tasks/PublishToMavenLocal.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.maven.MavenPublication.html

The created task is named “publ i sh« PUBNAME»Publ i cati onToMavenLocal .

Example 66.9. Publish a project to the Maven local repository

Output of gr adl e publ i shToMavenLocal

> gradl e publishToMavenLocal

: gener at ePonti | eFor MavenJavaPubl i cati on
:conpi |l eJava

: processResour ces UP- TO- DATE

:cl asses

tjar

: publ i shMavenJavaPubl i cati onToMavenLocal
: publ i shToMavenLocal

BU LD SUCCESSFUL

Total tine: 1 secs

The resulting task in this example is named “publ i shMavenJavaPubl i cati onToMavenLocal ”. This
task iswired into the publ i shToMavenLocal lifecycletask. Executing “gr adl e publ i shToMavenLocal
" builds the POM file and all of the artifacts to be published, and “installs’ them into the local Maven
repository.

66.6. Generating the POM file without publishing

At times it is useful to generate a Maven POM file for a module without actually publishing. Since POM
generation is performed by a separate task, it is very easy to do so.

The task for generating the POM file is of type Gener at eMavenPom and it is given a name based on the
name of the publication: “gener at ePonFi | eFor « PUBNAVE»Publ i cat i on”. So in the example below,
where the publication is named “rmavenCust onft, the task will be named “gener at ePonti | eFor MavenCust

Example 66.10. Generate a POM file without publishing

bui I d. gradl e

nodel {
t asks. gener at ePonFi | eFor MavenCust onPubl i cati on {
destination = file("$buil dDir/generated-pom xm ")

}

Output of gr adl e gener at ePonti | eFor MavenCust onPubl i cati on

> gradl e gener at ePonti | eFor MavenCust onPubl i cati on
: gener at ePonti | eFor MavenCust onPubl i cati on

BU LD SUCCESSFUL

Total tinme: 1 secs

Page 426 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.maven.tasks.GenerateMavenPom.html

All details of the publishing model are still considered in POM generation, including conponent s™, customarti-
, and any modifications made viapom wi t hXm .

The “maven- publ i sh” plugin leverages some experimental support for late plugin configuration, and

any Gener at eMavenPomtasks will not be constructed until the publishing extension is configured.

The simplest way to ensure that the publishing plugin is configured when you attempt to accessthe Gener at eV
task isto place the accessinside anpdel block, as the example above demonstrates.

The same applies to any attempt to access publication-specific tasks like
Publ i shToMavenReposi t or y. These tasks should be referenced from within anodel block.

Page 427 of 448

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html

A

Gradle Samples

Listed below are some of the stand-alone samples which are included in the Gradle distribution. You can find these
samplesin the GRADLE_HOME/ sanpl es directory of the distribution.

Table A.1. Samplesincluded in thedistribution

Sample

announce

application

bui | dDashboard

codeQual ity

cust onBui | dLanguage

custonDi stribution

cust onPl ugi n

ear/ ear Cust om zed/ ear

ear/ ear Wt h\War

groovy/ cust om zedLayout

groovy/ nm xedJavaAndG oovy

groovy/ mul ti proj ect

Description

A project which uses the announce plugin

A project which uses the application plugin

A project which uses the build-dashboard plugin

A project which uses the various code quality plugins.

This sample demonstrates how to add some custom
elements to the build DSL. It also demonstrates the use of
custom plug-ins to organize build logic.

This sample demonstrates how to create a custom Gradle
distribution and use it with the Gradle wrapper.

A set of projects that show how to implement, test,
publish and use a custom plugin and task.

Web application ear project with customized contents

Web application ear project

Groovy project with a custom source layout

Project containing a mix of Java and Groovy source

Build made up of multiple Groovy projects. Also
demonstrates how to exclude certain source files, and the
use of acustom Groovy AST transformation.

Page 428 of 448

groovy/ qui ckst art Groovy quickstart sample

j aval base Java base project
j aval/ cust om zedLayout Java project with a custom source layout
javal/ mul ti project This sample demonstrates how an application can be

composed using multiple Java projects.

j aval/ qui ckstart Java quickstart project

java/wi thlntegrationTests This sample demonstrates how to use a source set to add
an integration test suite to a Java project.

j avaG adl ePl ugi n This example demonstrates the use of the java gradle
plugin development plugin. By applying the plugin, the
java plugin is automatically applied as well as the
gradleApi() dependency. Furthermore, validations are
performed against the plugin metadata during jar
execution.

maven/ ponener at i on Demonstrates how to deploy and install to a Maven
repository. Also demonstrates how to deploy a javadoc
JAR along with the main JAR, how to customize the
contents of the generated POM, and how to deploy
snapshots and releases to different repositories.

maven/ qui ckst art Demonstrates how to deploy and install artifacts to a
Maven repository.

osgi A project which builds an OSGi bundle

scal a/ cust om zedLayout Scala project with a custom source layout

scal a/ fsc Scala project using the Fast Scala Compiler (fsc).
scal a/ m xedJavaAndScal a A project containing amix of Java and Scala source.
scal a/ qui ckstart Scala quickstart project

scal a/ zi nc Scala project using the Zinc based Scala compiler.

Page 429 of 448

testing/test Report Generates an HTML test report that includes the test
results from all subprojects.

t ool i ngApi / cust onivbdel A sample of how a plugin can expose its own custom
tooling model to tooling API clients.

t ool i ngApi / ecl i pse An application that uses the tooling API to build the
Eclipse model for a project.

tool i ngApi /i dea An application that uses the tooling APl to extract
information needed by IntelliJIDEA.

t ool i ngApi / nodel An application that uses the tooling APl to build the
model for a Gradle build.

t ool i ngApi / runBui | d An application that uses the tooling API to run a Gradle
task.
user gui de/ di stri bution A project which uses the distribution plugin

user gui de/ javali braryDi stri bution A project which usesthe Javalibrary distribution plugin
webAppl i cati on/ custom zed Web application with customized WAR contents.

webAppl i cati on/ qui ckstart Web application quickstart project

A.l. Samplecust onBui | dLanguage

This sample demonstrates how to add some custom elements to the build DSL. It also demonstrates the use of
custom plug-ins to organize build logic.

The build is composed of 2 types of projects. The first type of project represents a product, and the second
represents a product module. Each product includes one or more product modules, and each product module may be
included in multiple products. That is, there is a many-to-many relationship between these products and product
modules. For each product, the build produces a ZIP containing the runtime classpath for each product module
included in the product. The ZIP aso contains some product-specific files.

The custom elements can be seen in the build script for the product projects (for example, basi cEdi ti on/ bui | d.
). Notice that the build script usesthe pr oduct { } element. Thisis acustom element.

The build scripts of each project contain only declarative elements. The bulk of the work is done by 2 custom
plug-insfound in bui | dSrc/ src/ mai n/ gr oovy.

Page 430 of 448

A.2. Samplecust onDi stri buti on

This sample demonstrates how to create a custom Gradle distribution and use it with the Gradle wrapper.
This sample contains the following projects:

® The pl ugi n directory contains the project that implements a custom plugin, and bundles the plugin into a
custom Gradle distribution.
®* Theconsuner directory containsthe project that uses the custom distribution.

A.3. Samplecust onPl ugi n

A set of projects that show how to implement, test, publish and use a custom plugin and task.
This sample contains the following projects:

® Thepl ugi n directory contains the project that implements and publishes the plugin.
®* Theconsuner directory contains the project that uses the plugin.

A.4. Samplej ava/ nul t1 proj ect
This sample demonstrates how an application can be composed using multiple Java projects.

This build creates a client-server application which is distributed as 2 archives. First, there is a client ZIP which
includes an APl JAR, which a 3rd party application would compile against, and a client runtime. Then, there is a
server WAR which provides aweb service.

Page 431 of 448

B

Potential Traps

B.1. Groovy script variables

For Gradle users it is important to understand how Groovy deals with script variables. Groovy has two types of
script variables. One with aloca scope and one with a script-wide scope.

Page 432 of 448

Example B.1. Variables scope: local and script wide
scope. gr oovy

String | ocal Scopel = '|ocal Scopel’
def | ocal Scope2 = ' ocal Scope2’
scri pt Scope = 'script Scope

println | ocal Scopel
println | ocal Scope2
println scriptScope

closure = {
println | ocal Scopel
println | ocal Scope2
println scriptScope

met hod() {

try {
| ocal Scopel

} catch (M ssingPropertyException e) {
println '|ocal ScopelNot Avai | abl e

}

try {
| ocal Scope2

} catch(M ssi ngPropertyException e) {
println '|ocal Scope2Not Avai | abl e

}

println scriptScope

}

closure.call ()
met hod()

Output of gr adl e

> gradl e

| ocal Scopel

| ocal Scope2

scri pt Scope

| ocal Scopel

| ocal Scope2

scri pt Scope

| ocal ScopelNot Avai l abl e
| ocal Scope2Not Avai | abl e
scri pt Scope

Variables which are declared with atype modifier are visible within closures but not visible within methods. Thisis
a heavily discussed behavior in the Groovy community. [27]

B.2. Configuration and execution phase

It is important to keep in mind that Gradle has a distinct configuration and execution phase (see Chapter 56, The
Build Lifecycle).

Page 433 of 448

Example B.2. Distinct configuration and execution phase
buil d. gradl e

def classesDir = file('build/classes")
cl assesDir. nkdi rs()
task clean(type: Delete) {
delete 'build
}
task conpil e(dependsOn: 'clean') << {
if ('classesDir.isDirectory()) {
println ' The class directory does not exist. | can not operate
/1 do sonet hing

}

/1 do sonet hi ng

Output of gradl e -q conpil e

> gradle -q conpile
The class directory does not exist. | can not operate

As the creation of the directory happens during the configuration phase, the cl ean task removes the directory
during the execution phase.

[27] One of those discussions can be found here:
http://groovy.329449.n5.nabbl e.com/script-scopi ng-question-td355887.html

Page 434 of 448

http://groovy.329449.n5.nabble.com/script-scoping-question-td355887.html

C

The Feature Lifecycle

Gradle is under constant development and improvement. New versions are delivered on aregular and frequent basis
(approximately every 6 weeks). Continuous improvement combined with frequent delivery allows new features to
be made available to users early and for invaluable real world feedback to be incorporated into the development
process. Getting new functionality into the hands of users regularly is a core value of the Gradle platform. At the
same time, API and feature stability is taken very seriously and is also considered a core value of the Gradle
platform. This is something that is engineered into the development process by design choices and automated
testing, and is formalised by Section C.2, “Backwards Compatibility Policy”.

The Gradle feature lifecycle has been designed to meet these goals. It also servesto clearly communicate to users of
Gradle what the state of afeature is. The term feature typically means an APl or DSL method or property in this
context, but it is not restricted to this definition. Command line arguments and modes of execution (e.g. the Build
Daemon) are two examples of other kinds of features.

C.1. States

Features can be in one of 4 states:

® Internd
® Incubating
Public
® Deprecated

C.1.1. Internd

Internal features are not designed for public use and are only intended to be used by Gradle itself. They can change
in any way at any point in time without any notice. Therefore, we recommend avoiding the use of such features.
Internal features are not documented. If it appears in this User Guide, the DSL Reference or the APl Reference
documentation then the feature is not internal .

Internal features may evolve into public features.

C.1.2. Incubating

Features are introduced in the incubating state to allow real world feedback to be incorporated into the feature
before it is made public and locked down to provide backwards compatibility. It also gives users who are willing to
accept potential future changes early access to the feature so they can put it into use immediately.

A feature in an incubating state may change in future Gradle versions until it is no longer incubating. Changes to
incubating features for a Gradle release will be highlighted in the release notes for that release. The incubation

Page 435 of 448

period for new features varies depending on the scope, complexity and nature of the feature.

Features in incubation are clearly indicated to be so. In the source code, all methods/properties/classes that are
incubating are annotated with | ncubat i ng, which is aso used to specialy mark them in the DSL and API
references. If an incubating feature is discussed in this User Guide, it will be explicitly said to be in the incubating
State.

C.1.3. Public

The default state for a non-internal feature is public. Anything that is documented in the User Guide, DSL
Reference or API references that is not explicitly said to be incubating or deprecated is considered public. Features
are said to be promoted from an incubating state to public. The release notes for each release indicate which
previously incubating features are being promoted by the release.

A public feature will never be removed or intentionally changed without undergoing deprecation. All public
features are subject to the backwards compatibility policy.

C.1.4. Deprecated

Some features will become superseded or irrelevant due to the natural evolution of Gradle. Such features will
eventually be removed from Gradle after being deprecated. A deprecated feature will never be changed, until it is
finally removed according to the backwards compatibility policy.

Deprecated features are clearly indicated to be so. In the source code, al methods/properties/classes that are
deprecated are annotated with “ @ ava. | ang. Depr ecat ed” which isreflected in the DSL and APl references.
In most cases, there is a replacement for the deprecated element, and this will be described in the documentation.
Using a deprecated feature will also result in aruntime warning in Gradle's outpui.

Use of deprecated features should be avoided. The release notes for each release indicate any features that are being
deprecated by the release.

C.2. Backwards Compatibility Policy

Gradle provides backwards compatibility across major versions (e.g. 1. x, 2. x, etc.). Once a public feature is
introduced or promoted in a Gradle release it will remain indefinitely or until it is deprecated. Once deprecated, it
may be removed in the next major release. Deprecated features may be supported across major releases, but thisis
not guaranteed.

Page 436 of 448

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/Incubating.html

D

Gradle Command Line

The gradle command has the following usage:
gradle [option...] [task...]
The command-line options available for the gradle command are listed below:

-?,-h,--help
Shows a help message.

-a,--no-rebuild
Do not rebuild project dependencies.

--all
Shows additional detail in the task listing. See Section 11.6.2, “Listing tasks”.

-b,--build-file
Specifies the build file. See Section 11.5, “ Selecting which build to execute”.

-c,--settings-file
Specifies the settings file.

--consol e
Specifies which type of console output to generate.

Set to pl ai n to generate plain text only. This option disables all color and other rich output in the console
output.

Set to aut o (the default) to enable color and other rich output in the console output when the build process is
attached to a console, or to generate plain text only when not attached to a console.

Settori ch to enable color and other rich output in the console output, regardless of whether the build process
is not attached to a console. When not attached to a console, the build output will use ANSI control charactersto
generate the rich output.

--conti nue
Continues task execution after atask failure.

--configure-on-denand (i ncubating)
Only relevant projects are configured in this build run. This means faster builds for large multi-projects. See
Section 57.1.1.1, “ Configuration on demand”.

Page 437 of 448

-D,--system prop
Sets a system property of the VM, for example - Dmypr op=myval ue. See Section 14.2, “Gradle properties
and system properties’.

-d,--debug
Log in debug mode (includes normal stacktrace). See Chapter 18, Logging.

-g,--gradl e-user - hone
Specifies the Gradle user home directory. The default isthe . gr adl e directory in the user's home directory.

- - gui
Launches the Gradle GUI. See Chapter 12, Using the Gradle Graphical User Interface.

-l,--init-script
Specifies an initialization script. See Chapter 61, Initialization Scripts.

-i,--info
Set log level to info. See Chapter 18, Logging.

-m--dry-run
Runs the build with all task actions disabled. See Section 11.7, “Dry Run”.

--offline
Specifies that the build should operate without accessing network resources. See Section 51.9.2, “Command line
options to override caching”.

-P,--project-prop
Sets a project property of the root project, for example - Pnypr op=mnyval ue. See Section 14.2, “Gradle
properties and system properties”’.

-p,--project-dir
Specifies the start directory for Gradle. Defaults to current directory. See Section 11.5, “ Selecting which build
to execute”.

--parallel (incubating)
Build projectsin parallel. Gradle will attempt to determine the optimal number of executor threads to use. This
option should only be used with decoupled projects (see Section 57.9, “ Decoupled Projects’).

--parallel-threads (incubating)
Build projectsin parallel, using the specified number of executor threads. For example- - par al | el -t hr eads=
. This option should only be used with decoupled projects (see Section 57.9, “Decoupled Projects”).

--profile
Profiles build execution time and generates a report in the bui | dDi r / report s/ profi |l e directory. See
Section 11.6.7, “Profiling abuild”.

--project-cache-dir
Specifies the project-specific cache directory. Default value is . gr adl e in the root project directory. See
Section 14.6, “Caching”.

Page 438 of 448

-q,--qui et
Log errors only. See Chapter 18, Logging.

--reconpil e-scripts
Specifies that cached build scripts are skipped and forced to be recompiled. See Section 14.6, “ Caching”.

--refresh-dependenci es
Refresh the state of dependencies. See Section 51.9.2, “Command line options to override caching”.

--rerun-tasks
Specifies that any task optimization isignored.

-S,--full-stacktrace
Print out the full (very verbose) stacktrace for any exceptions. See Chapter 18, Logging.

-s,--stacktrace
Print out the stacktrace also for user exceptions (e.g. compile error). See Chapter 18, Logging.

- u,--no-sear ch-upwar ds
Don't search in parent directoriesfor aset t i ngs. gr adl e file.

-V,--version
Prints version info.

- X, --excl ude-task
Specifies atask to be excluded from execution. See Section 11.2, “Excluding tasks’.

The above information is printed to the console when you execute gr adl e - h.

D.1. Deprecated command-line options

--no-col or
Do not use color in the console output. This option has been replaced by the - - consol e pl ai n option.

D.2. Daemon command-line options

The Chapter 19, The Gradle Daemon contains more information about the daemon. For example it includes
information how to turn on the daemon by default so that you can avoid using - - daenon all thetime.

- - daenon
Uses the Gradle daemon to run the build. Starts the daemon if not running or existing daemon busy. Chapter 19,
The Gradle Daemon contains more detailed information when new daemon processes are started.

--foreground
Starts the Gradle daemon in the foreground. Useful for debugging or troubleshooting because you can easily
monitor the build execution.

Page 439 of 448

- - no- daenon

Do not use the Gradle daemon to run the build. Useful occasionally if you have configured Gradle to always run
with the daemon by default.

--stop

Stops the Gradle daemon if it is running. You can only stop daemons that were started with the Gradle version
you use when running - - st op.

D.3. System properties

The following system properties are available for the gradle command. Note that command-line options take
precedence over system properties.

gradl e. user. hone
Specifies the Gradle user home directory.

The Section 20.1, “Configuring the build environment via gradle.properties’ contains specific information about
Gradle configuration available via system properties.

D.4. Environment variables

The following environment variables are available for the gradle command. Note that command-line options and
system properties take precedence over environment variables.

GRADLE_OPTS
Specifies command-line arguments to use to start the JVM. This can be useful for setting the system properties
to use for running Gradle. For example you could set GRADLE_OPTS="- Dor g. gr adl e. daenon=t r ue"
to use the Gradle daemon without needing to use the - - daenon option every time you run Gradle.
Section 20.1, “Configuring the build environment via gradle.properties’ contains more information about ways
of configuring the daemon without using environmental variables, e.g. in more maintainable and explicit way.

GRADLE_USER HOVE
Specifies the Gradle user home directory (which defaultsto “USER _HOVE/ . gr adl e” if not set).

JAVA_HOVE
Specifiesthe JDK installation directory to use.

Page 440 of 448

E

Existing | DE Support and how to cope
without it

E.1. IntelliJ

Gradle has been mainly developed with Idea IntelliJ and its very good Groovy plugin. Gradle's build script [28] has
also been developed with the support of this IDE. IntelliJ allows you to define any filepattern to be interpreted as a
Groovy script. In the case of Gradle you can define such a pattern for bui | d. gr adl e andset ti ngs. gr adl e.
Thiswill already help very much. What is missing is the classpath to the Gradle binaries to offer content assistance
for the Gradle classes. You might add the Gradle jar (which you can find in your distribution) to your project's
classpath. It does not really belong there, but if you do this you have a fantastic IDE support for developing Gradle
scripts. Of course if you use additional libraries for your build scripts they would further pollute your project

classpath.

We hope that in the future *. gr adl e files get special treatment by IntelliJ and you will be able to define a specific
classpath for them.

E.2. Eclipse

Thereis a Groovy plugin for eclipse. We don't know in what state it is and how it would support Gradle. In the next
edition of this user guide we can hopefully write more about this.

E.3. Using Gradle without | DE support

What we can do for you is to spare you typing thingslike t hr ow new or g. gradl e. api . t asks. St opExecut
and just typet hr ow new St opExecuti onExcepti on() instead. We do this by automatically adding a set
of import statements to the Gradle scripts before Gradle executes them. Listed below are the imports added to each
script.

FigureE.1. gradle-imports

*

.artifacts. *
.artifacts.cache. *
.artifacts. conmponent. *

.artifacts.dsl.*
.artifacts.ivy.*
.artifacts. maven. *
.artifacts.query.*
.artifacts.repositories.*

Page 441 of 448

.api.artifacts.result.*

. api . conponent . *
.api.distribution.*
.api.distribution. plugins.*
.api.dsl.*

.api . execution. *
.api.file. *
.api.initialization.*
.api.initialization.dsl.*
.api.invocation.*

.api .java. archives. *

.api .| oggi ng. *

.api . plugins.*

.api . pl ugi ns. announce. *
.api.plugins.antlr.*

. api . pl ugi ns. bui | dconpari son. gradl e. *
.api.plugins.jetty. *
.api.plugins.osgi.*
.api.plugins.quality.*
.api.plugins.scala.*

. api . pl ugi ns. sonar . *

.api . pl ugi ns. sonar . nodel . *
. api . publish.*
.api.publish.ivy.*

.api . publish.ivy.plugins.*
.api.publish.ivy.tasks.*

. api . publ i sh. maven. *

.api . publi sh. maven. pl ugi ns. *
.api . publ i sh. maven. t asks. *
.api . publ i sh. pl ugi ns. *
.api.reporting.*
.api.reporting. conponents. *
.api . reporting. dependenci es. *
.api . reporting. pl ugi ns. *

. api . resources. *

. api . specs. *

.api . tasks. *

.api . tasks. ant. *

.api .tasks. application.*
.api . tasks. bundl i ng. *

. api . tasks. conpi l e. *

. api . tasks. di agnostics. *
.api.tasks.increnental .*
.api . tasks. j avadoc. *

.api .tasks.scala.*
.api.tasks.testing.*
.api.tasks.testing.junit.*
.api . tasks.testing.testng.*
.api.tasks.util.*

. api . tasks. wr apper . *

. bui I di nit. plugins.*

bui l dinit.tasks.*

ext ernal . j avadoc. *

i de.cdt.*

i de. cdt.tasks.*

i de. vi sual studi o. *

i de. vi sual st udi o. pl ugi ns. *
i de. vi sual studi o.tasks. *
ivy.*

jvm *

jvmpl atform *

Page 442 of 448

j vm pl ugi ns. *

jvm tasks. *

jvmtool chain. *

| anguage. *

| anguage. assenbl er . *

| anguage. assenbl er. pl ugi ns. *
| anguage. assenbl er. t asks. *

| anguage. base. *

| anguage. base. artifact.*

| anguage. base. pl ugi ns. *

| anguage. c. *

| anguage. c. pl ugi ns. *

| anguage. c. t asks. *

| anguage. cof f eescri pt . *

| anguage. cpp. *

| anguage. cpp. pl ugi ns. *

| anguage. cpp. t asks. *

| anguage. j ava. *

| anguage. j ava. artifact.*

| anguage. j ava. pl ugi ns. *

| anguage. j ava. t asks. *

| anguage. j avascri pt. *

| anguage. jvm *

| anguage. j vm pl ugi ns. *

| anguage. j vm t asks. *

| anguage. nati vepl atform *

| anguage. nati vepl atform t asks. *
| anguage. obj ecti vec. *

| anguage. obj ecti vec. pl ugi ns. *
| anguage. obj ecti vec. t asks. *

| anguage. obj ecti vecpp. *

| anguage. obj ect i vecpp. pl ugi ns. *
| anguage. obj ecti vecpp. t asks. *
| anguage.rc. *

| anguage. rc. pl ugi ns. *

| anguage. rc. t asks. *

| anguage. scal a. *

| anguage. scal a. pl ugi ns. *

| anguage. scal a. t asks. *

| anguage. scal a. t ool chai n. *
maven. *

nodel . *

nati vepl at form *
nativepl atform pl atform *
nati vepl at f orm pl ugi ns. *

nati vepl at f orm t asks. *
nativeplatformtest.*
nativeplatformtest.cunit.*
nativeplatformtest. cunit.plugins.*
nativeplatformtest.cunit.tasks.*
nativepl atformtest. plugins. *
nativepl atformtest.tasks.*
nati vepl at f orm t ool chai n. *
nati vepl at f orm t ool chai n. pl ugi ns. *
pl at f or m base. *

pl at f orm base. bi nary. *

pl at f or m base. conmponent . *

pl at f orm base.test.*

play.*

play. platform *

pl ay. pl ugi ns. *

Page 443 of 448

pl ay. t asks. *
pl ay. t ool chai n. *
pl ugi n. use. *

pl ugi
pl ugi
pl ugi
pl ug
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi

ns.
ns.
ns.
ns.
ns.
ns.
ns.
ns.
ns.
ns.
ns.
ns.
ns.
ns.
ns.
ns.
ns.
ns.
ns.

ear.*

ear. descriptor. *

i de. api . *

i de. ecli pse. *

i de. i dea. *
javascri pt . base. *
javascript. cof feescript.*
javascript.envjs.*
javascri pt.envjs. browser. *
javascript.envjs.http.*
javascript.envjs.http.sinple.*
javascript.jshint.*
javascript.rhino.*
javascri pt.rhi no. wor ker. *
si gni ng. *

si gni ng. si gnatory. *

si gni ng. si gnat ory. pgp. *

si gni ng. type. *

si gni ng. t ype. pgp. *

process. *

sonar. runner. *

sonar. runner. pl ugi ns. *
sonar . runner .t asks. *
testing.jacoco. pl ugi ns. *

Page 444 of 448

i mport org.gradle.testing.jacoco.tasks.*

import org.gradle.util.*

[28] Gradleis built with Gradle

Page 445 of 448

Gradle User Guide

A

Artifact
”

B
Build Script

7

C

Configuration
See Dependency Configuration.

Configuration Injection
7

D

DAG
See Directed Acyclic Graph.

Dependency
See External Dependency .

See Project Dependency.

7

Dependency Configuration
”

Dependency Resolution
7

Directed Acyclic Graph
A directed acyclic graph is a directed graph that contains no cycles. In Gradle each task to execute represents a
node in the graph. A dependsOn relation to another task will add this other task as a node (if it is not in the
graph aready) and create a directed edge between those two nodes. Any dependsOn relation will be validated
for cycles. There must be no way to start at certain node, follow a sequence of edges and end up at the original
node.

Domain Specific Language

A domain-specific language is a programming language or specification language dedicated to a particular
problem domain, a particular problem representation technique, and/or a particular solution technique. The
concept isn't new—special-purpose programming languages and all kinds of modeling/specification languages
have always existed, but the term has become more popular due to the rise of domain-specific modeling.

DSL
See Domain Specific Language.
E

External Dependency
7

Extension Object
”

Init Script
A script that is run before the build itself starts, to alow customization of Gradle and the build.

Initialization Script
See Init Script.

P

Plugin
”

Project
7

Project Dependency
”

Publication
”

R

Repository
”

S

Source Set
»

Task

Transitive Dependency
”

	Chapter 1. Introduction
	1.1. About this user guide

	Chapter 2. Overview
	2.1. Features
	2.2. Why Groovy?

	Chapter 3. Tutorials
	3.1. Getting Started

	Chapter 4. Installing Gradle
	4.1. Prerequisites
	4.2. Download
	4.3. Unpacking
	4.4. Environment variables
	4.5. Running and testing your installation
	4.6. JVM options

	Chapter 5. Troubleshooting
	5.1. Working through problems
	5.2. Getting help

	Chapter 6. Build Script Basics
	6.1. Projects and tasks
	6.2. Hello world
	6.3. A shortcut task definition
	6.4. Build scripts are code
	6.5. Task dependencies
	6.6. Dynamic tasks
	6.7. Manipulating existing tasks
	6.8. Shortcut notations
	6.9. Extra task properties
	6.10. Using Ant Tasks
	6.11. Using methods
	6.12. Default tasks
	6.13. Configure by DAG
	6.14. Where to next?

	Chapter 7. Java Quickstart
	7.1. The Java plugin
	7.2. A basic Java project
	7.3. Multi-project Java build
	7.4. Where to next?

	Chapter 8. Dependency Management Basics
	8.1. What is dependency management?
	8.2. Declaring your dependencies
	8.3. Dependency configurations
	8.4. External dependencies
	8.5. Repositories
	8.6. Publishing artifacts
	8.7. Where to next?

	Chapter 9. Groovy Quickstart
	9.1. A basic Groovy project
	9.2. Summary

	Chapter 10. Web Application Quickstart
	10.1. Building a WAR file
	10.2. Running your web application
	10.3. Summary

	Chapter 11. Using the Gradle Command-Line
	11.1. Executing multiple tasks
	11.2. Excluding tasks
	11.3. Continuing the build when a failure occurs
	11.4. Task name abbreviation
	11.5. Selecting which build to execute
	11.6. Obtaining information about your build
	11.7. Dry Run
	11.8. Summary

	Chapter 12. Using the Gradle Graphical User Interface
	12.1. Task Tree
	12.2. Favorites
	12.3. Command Line
	12.4. Setup

	Chapter 13. Writing Build Scripts
	13.1. The Gradle build language
	13.2. The Project API
	13.3. The Script API
	13.4. Declaring variables
	13.5. Some Groovy basics

	Chapter 14. Tutorial - 'This and That'
	14.1. Directory creation
	14.2. Gradle properties and system properties
	14.3. Configuring the project using an external build script
	14.4. Configuring arbitrary objects
	14.5. Configuring arbitrary objects using an external script
	14.6. Caching

	Chapter 15. More about Tasks
	15.1. Defining tasks
	15.2. Locating tasks
	15.3. Configuring tasks
	15.4. Adding dependencies to a task
	15.5. Ordering tasks
	15.6. Adding a description to a task
	15.7. Replacing tasks
	15.8. Skipping tasks
	15.9. Skipping tasks that are up-to-date
	15.10. Task rules
	15.11. Finalizer tasks
	15.12. Summary

	Chapter 16. Working With Files
	16.1. Locating files
	16.2. File collections
	16.3. File trees
	16.4. Using the contents of an archive as a file tree
	16.5. Specifying a set of input files
	16.6. Copying files
	16.7. Using the Sync task
	16.8. Creating archives

	Chapter 17. Using Ant from Gradle
	17.1. Using Ant tasks and types in your build
	17.2. Importing an Ant build
	17.3. Ant properties and references
	17.4. API

	Chapter 18. Logging
	18.1. Choosing a log level
	18.2. Writing your own log messages
	18.3. Logging from external tools and libraries
	18.4. Changing what Gradle logs

	Chapter 19. The Gradle Daemon
	19.1. Enter the daemon
	19.2. Reusing and expiration of daemons
	19.3. Usage and troubleshooting
	19.4. Configuring the daemon

	Chapter 20. The Build Environment
	20.1. Configuring the build environment via gradle.properties
	20.2. Accessing the web via a proxy

	Chapter 21. Gradle Plugins
	21.1. What plugins do
	21.2. Types of plugins
	21.3. Applying plugins
	21.4. Applying plugins with the buildscript block
	21.5. Applying plugins with the plugins DSL
	21.6. Finding community plugins
	21.7. More on plugins

	Chapter 22. Standard Gradle plugins
	22.1. Language plugins
	22.2. Incubating language plugins
	22.3. Integration plugins
	22.4. Incubating integration plugins
	22.5. Software development plugins
	22.6. Incubating software development plugins
	22.7. Base plugins
	22.8. Third party plugins

	Chapter 23. The Java Plugin
	23.1. Usage
	23.2. Source sets
	23.3. Tasks
	23.4. Project layout
	23.5. Dependency management
	23.6. Convention properties
	23.7. Working with source sets
	23.8. Javadoc
	23.9. Clean
	23.10. Resources
	23.11. CompileJava
	23.12. Incremental Java compilation
	23.13. Test
	23.14. Jar
	23.15. Uploading

	Chapter 24. The Groovy Plugin
	24.1. Usage
	24.2. Tasks
	24.3. Project layout
	24.4. Dependency management
	24.5. Automatic configuration of groovyClasspath
	24.6. Convention properties
	24.7. Source set properties
	24.8. GroovyCompile

	Chapter 25. The Scala Plugin
	25.1. Usage
	25.2. Tasks
	25.3. Project layout
	25.4. Dependency management
	25.5. Automatic configuration of scalaClasspath
	25.6. Convention properties
	25.7. Source set properties
	25.8. Fast Scala Compiler
	25.9. Compiling in external process
	25.10. Incremental compilation
	25.11. Eclipse Integration
	25.12. IntelliJ IDEA Integration

	Chapter 26. The War Plugin
	26.1. Usage
	26.2. Tasks
	26.3. Project layout
	26.4. Dependency management
	26.5. Convention properties
	26.6. War
	26.7. Customizing

	Chapter 27. The Ear Plugin
	27.1. Usage
	27.2. Tasks
	27.3. Project layout
	27.4. Dependency management
	27.5. Convention properties
	27.6. Ear
	27.7. Customizing
	27.8. Using custom descriptor file

	Chapter 28. The Jetty Plugin
	28.1. Usage
	28.2. Tasks
	28.3. Project layout
	28.4. Dependency management
	28.5. Convention properties

	Chapter 29. The Checkstyle Plugin
	29.1. Usage
	29.2. Tasks
	29.3. Project layout
	29.4. Dependency management
	29.5. Configuration

	Chapter 30. The CodeNarc Plugin
	30.1. Usage
	30.2. Tasks
	30.3. Project layout
	30.4. Dependency management
	30.5. Configuration

	Chapter 31. The FindBugs Plugin
	31.1. Usage
	31.2. Tasks
	31.3. Dependency management
	31.4. Configuration

	Chapter 32. The JDepend Plugin
	32.1. Usage
	32.2. Tasks
	32.3. Dependency management
	32.4. Configuration

	Chapter 33. The PMD Plugin
	33.1. Usage
	33.2. Tasks
	33.3. Dependency management
	33.4. Configuration

	Chapter 34. The JaCoCo Plugin
	34.1. Getting Started
	34.2. Configuring the JaCoCo Plugin
	34.3. JaCoCo Report configuration
	34.4. JaCoCo specific task configuration
	34.5. Tasks
	34.6. Dependency management

	Chapter 35. The Sonar Plugin
	35.1. Usage
	35.2. Analyzing Multi-Project Builds
	35.3. Analyzing Custom Source Sets
	35.4. Analyzing languages other than Java
	35.5. Setting Custom Sonar Properties
	35.6. Configuring Sonar Settings from the Command Line
	35.7. Tasks

	Chapter 36. The Sonar Runner Plugin
	36.1. Sonar Runner version and compatibility
	36.2. Getting started
	36.3. Configuring the Sonar Runner
	36.4. Specifying the Sonar Runner version
	36.5. Analyzing Multi-Project Builds
	36.6. Analyzing Custom Source Sets
	36.7. Analyzing languages other than Java
	36.8. More on configuring Sonar properties
	36.9. Setting Sonar Properties from the Command Line
	36.10. Controlling the Sonar Runner process
	36.11. Tasks

	Chapter 37. The OSGi Plugin
	37.1. Usage
	37.2. Implicitly applied plugins
	37.3. Tasks
	37.4. Dependency management
	37.5. Convention object
	37.6.

	Chapter 38. The Eclipse Plugins
	38.1. Usage
	38.2. Tasks
	38.3. Configuration
	38.4. Customizing the generated files

	Chapter 39. The IDEA Plugin
	39.1. Usage
	39.2. Tasks
	39.3. Configuration
	39.4. Customizing the generated files
	39.5. Further things to consider

	Chapter 40. The ANTLR Plugin
	40.1. Usage
	40.2. Tasks
	40.3. Project layout
	40.4. Dependency management
	40.5. Convention properties
	40.6. Source set properties
	40.7. Controlling the ANTLR generator process

	Chapter 41. The Project Report Plugin
	41.1. Usage
	41.2. Tasks
	41.3. Project layout
	41.4. Dependency management
	41.5. Convention properties

	Chapter 42. The Announce Plugin
	42.1. Usage
	42.2. Configuration

	Chapter 43. The Build Announcements Plugin
	43.1. Usage

	Chapter 44. The Distribution Plugin
	44.1. Usage
	44.2. Tasks
	44.3. Distribution contents
	44.4. Publishing distributions

	Chapter 45. The Application Plugin
	45.1. Usage
	45.2. Tasks
	45.3. Convention properties
	45.4. Including other resources in the distribution

	Chapter 46. The Java Library Distribution Plugin
	46.1. Usage
	46.2. Tasks
	46.3. Including other resources in the distribution

	Chapter 47. Build Init Plugin
	47.1. Tasks
	47.2. What to set up
	47.3. Build init types

	Chapter 48. Wrapper Plugin
	48.1. Usage
	48.2. Tasks

	Chapter 49. The Build Dashboard Plugin
	49.1. Usage
	49.2. Tasks
	49.3. Project layout
	49.4. Dependency management
	49.5. Configuration

	Chapter 50. The Java Gradle Plugin Development Plugin
	50.1. Usage

	Chapter 51. Dependency Management
	51.1. Introduction
	51.2. Dependency Management Best Practices
	51.3. Dependency configurations
	51.4. How to declare your dependencies
	51.5. Working with dependencies
	51.6. Repositories
	51.7. How dependency resolution works
	51.8. Fine-tuning the dependency resolution process
	51.9. The dependency cache
	51.10. Strategies for transitive dependency management

	Chapter 52. Publishing artifacts
	52.1. Introduction
	52.2. Artifacts and configurations
	52.3. Declaring artifacts
	52.4. Publishing artifacts
	52.5. More about project libraries

	Chapter 53. The Maven Plugin
	53.1. Usage
	53.2. Tasks
	53.3. Dependency management
	53.4. Convention properties
	53.5. Convention methods
	53.6. Interacting with Maven repositories

	Chapter 54. The Signing Plugin
	54.1. Usage
	54.2. Signatory credentials
	54.3. Specifying what to sign
	54.4. Publishing the signatures
	54.5. Signing POM files

	Chapter 55. Building native binaries
	55.1. Supported languages
	55.2. Tool chain support
	55.3. Tool chain installation
	55.4. Component model
	55.5. Building a library
	55.6. Building an executable
	55.7. Tasks
	55.8. Finding out more about your project
	55.9. Language support
	55.10. Configuring the compiler, assembler and linker
	55.11. Windows Resources
	55.12. Library Dependencies
	55.13. Native Binary Variants
	55.14. Tool chains
	55.15. Visual Studio IDE integration
	55.16. CUnit support

	Chapter 56. The Build Lifecycle
	56.1. Build phases
	56.2. Settings file
	56.3. Multi-project builds
	56.4. Initialization
	56.5. Configuration and execution of a single project build
	56.6. Responding to the lifecycle in the build script

	Chapter 57. Multi-project Builds
	57.1. Cross project configuration
	57.2. Subproject configuration
	57.3. Execution rules for multi-project builds
	57.4. Running tasks by their absolute path
	57.5. Project and task paths
	57.6. Dependencies - Which dependencies?
	57.7. Project lib dependencies
	57.8. Parallel project execution
	57.9. Decoupled Projects
	57.10. Multi-Project Building and Testing
	57.11. Multi Project and buildSrc
	57.12. Property and method inheritance
	57.13. Summary

	Chapter 58. Writing Custom Task Classes
	58.1. Packaging a task class
	58.2. Writing a simple task class
	58.3. A standalone project
	58.4. Incremental tasks

	Chapter 59. Writing Custom Plugins
	59.1. Packaging a plugin
	59.2. Writing a simple plugin
	59.3. Getting input from the build
	59.4. Working with files in custom tasks and plugins
	59.5. A standalone project
	59.6. Maintaining multiple domain objects

	Chapter 60. Organizing Build Logic
	60.1. Inherited properties and methods
	60.2. Injected configuration
	60.3. Build sources in the buildSrc project
	60.4. Running another Gradle build from a build
	60.5. External dependencies for the build script
	60.6. Ant optional dependencies
	60.7. Summary

	Chapter 61. Initialization Scripts
	61.1. Basic usage
	61.2. Using an init script
	61.3. Writing an init script
	61.4. External dependencies for the init script
	61.5. Init script plugins

	Chapter 62. The Gradle Wrapper
	62.1. Configuration
	62.2. Unix file permissions

	Chapter 63. Embedding Gradle
	63.1. Introduction to the Tooling API
	63.2. Tooling API and the Gradle Build Daemon
	63.3. Quickstart

	Chapter 64. Comparing Builds
	64.1. Definition of terms
	64.2. Current Capabilities
	64.3. Comparing Gradle Builds

	Chapter 65. Ivy Publishing (new)
	65.1. The “ivy-publish” Plugin
	65.2. Publications
	65.3. Repositories
	65.4. Performing a publish
	65.5. Generating the Ivy module descriptor file without publishing
	65.6. Complete example
	65.7. Future features

	Chapter 66. Maven Publishing (new)
	66.1. The “maven-publish” Plugin
	66.2. Publications
	66.3. Repositories
	66.4. Performing a publish
	66.5. Publishing to Maven Local
	66.6. Generating the POM file without publishing

	Appendix A. Gradle Samples
	A.1. Sample customBuildLanguage

	A.2. Sample customDistribution

	A.3. Sample customPlugin

	A.4. Sample java/multiproject

	Appendix B. Potential Traps
	B.1. Groovy script variables
	B.2. Configuration and execution phase

	Appendix C. The Feature Lifecycle
	C.1. States
	C.2. Backwards Compatibility Policy

	Appendix D. Gradle Command Line
	D.1. Deprecated command-line options
	D.2. Daemon command-line options
	D.3. System properties
	D.4. Environment variables

	Appendix E. Existing IDE Support and how to cope without it
	E.1. IntelliJ
	E.2. Eclipse
	E.3. Using Gradle without IDE support

